Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy nếu một trong 3 số x, y, z bằng 0 thì 2 số còn lại cũng bằng 0 và M = 0
Xét trường hợp \(xyz\ne0\) :
Đặt \(2^x=3^y=6^{-z}=k>0\). Khi đó \(2=k^{\frac{1}{x}};3=k^{\frac{1}{y}};6=k^{-\frac{1}{z}}\)
mà \(2.3=6\) nên \(k^{\frac{1}{x}}.k^{\frac{1}{y}}=k^{-\frac{1}{z}}\)
\(\Leftrightarrow k^{\frac{1}{x}+\frac{1}{y}}=k^{-\frac{1}{z}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
\(\Leftrightarrow xy+yz+zx=0\)
Vậy trong mọi trường hợp, ta đều có : \(M=0\)
Đặt \(\left(\dfrac{x}{6};\dfrac{y}{3};\dfrac{z}{2}\right)=\left(a;b;c\right)\Rightarrow2^{6a}+4^{3b}+8^{2c}=4\)
\(\Leftrightarrow64^a+64^b+64^c=4\)
Áp dụng BĐT Cô-si:
\(4=64^a+64^b+64^c\ge3\sqrt[3]{64^{a+b+c}}\Rightarrow64^{a+b+c}\le\dfrac{64}{27}\)
\(\Rightarrow a+b+c\le log_{64}\left(\dfrac{64}{27}\right)\Rightarrow M=log_{64}\left(\dfrac{64}{27}\right)\)
Lại có: \(x;y;z\ge0\Rightarrow a;b;c\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}64^a\ge1\\64^b\ge1\\64^c\ge1\end{matrix}\right.\) \(\Rightarrow\left(64^b-1\right)\left(64^c-1\right)\ge0\)
\(\Rightarrow64^{b+c}+1\ge64^b+64^c\) (1)
Lại có: \(b+c\ge0\Rightarrow64^{b+c}\ge1\Rightarrow\left(64^a-1\right)\left(64^{b+c}-1\right)\ge0\)
\(\Rightarrow64^{a+b+c}+1\ge64^a+64^{b+c}\) (2)
Cộng vế (1);(2) \(\Rightarrow4=64^a+64^b+64^c\le64^{a+b+c}+2\)
\(\Rightarrow64^{a+b+c}\ge2\Rightarrow a+b+c\ge log_{64}2\)
\(\Rightarrow N=log_{64}2\)
\(\Rightarrow T=2log_{64}\left(\dfrac{64}{27}\right)+6log_{64}\left(2\right)\approx1,4\)
Đáp án D
⇔ log z - 1 log z = 1 1 - log x
⇔ 1 - log x = log z log z - 1
⇔ log x = - 1 log z - 1 ⇔ x = 10 1 1 - log z .
Chọn D.
Ta có: x2 + y2 = 14. Nên (x + y)2 = 16xy
Suy ra: log2(x + y) 2 = log2( 16xy)
Chọn B.
Ta có: x2 + y2 = 8xy hay (x + y) 2 = 10xy
Suy ra: log( x + y) 2 = log( 10xy)
Do đó: 2log( x+y) = 1 + logx + log y
⇒ log x + y = 1 + log x + log y 2
Đáp án C
Đặt
Đồng thời :