\(x^2+y^2+\left(\frac{1+xy}{x+y}\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

Đặt \(z=-\frac{1+xy}{x+y}\) ta có \(xy+yz+zx=-1\) và BĐT trở thành

\(x^2+y^2+z^2\ge2\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+zx\right)\Leftrightarrow\left(x+y+z\right)^2\ge0\) ( luôn đúng )

Vậy BĐT được chứng minh.

26 tháng 7 2016

- Sai thì nói mình nhé =)

13 tháng 10 2016

1)đề thiếu

2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)

\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)

Đpcm

3)\(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

Đpcm

13 tháng 10 2016

P OI cai nay dung bat dang thuc co si do

19 tháng 5 2017

1/ Sửa đề:   \(x+y+z=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\)   \(\left(x+y\right)+\left(y+z\right)+\left(z+x\right)-2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=0\)

\(\Leftrightarrow\)   \(\left(x-2\sqrt{xy}+y\right)+\left(y-2\sqrt{yz}+z\right)+\left(z-2\sqrt{zx}+x\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2=0\)

Với mọi x, y, z ta luôn có:   \(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0;\)   \(\left(\sqrt{y}-\sqrt{z}\right)^2\ge0;\)   \(\left(\sqrt{z}-\sqrt{x}\right)^2\ge0;\)

\(\Rightarrow\)   \(\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)

Do đó dấu "=" xảy ra    \(\Leftrightarrow\)    \(\hept{\begin{cases}\left(\sqrt{x}-\sqrt{y}\right)^2=0\\\left(\sqrt{y}-\sqrt{z}\right)^2=0\\\left(\sqrt{z}-\sqrt{x}\right)^2=0\end{cases}}\)   \(\Leftrightarrow\)    \(\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)    \(\Leftrightarrow\)    x = y = z

3/ Đây là BĐT Cô-si cho 2 số dương a và b, ta biến đổi tương đương để chứng minh

\(a+b\ge2\sqrt{ab}\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)   \(\Leftrightarrow\)   \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\)   \(a^2+b^2+2ab-4ab\ge0\)    \(\Leftrightarrow\)    \(a^2-2ab+b^2\ge0\)   \(\Leftrightarrow\)   \(\left(a-b\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi a = b

2/ Vì x > y và xy = 1 áp dụng BĐT Cô-si ta được:

\(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{1}{x-y}\ge2\sqrt{\left(x-y\right).\frac{1}{x-y}}=2\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}x>y\\xy=1\\x-y=\frac{1}{x-y}\end{cases}}\)   \(\Leftrightarrow\)   \(\hept{\begin{cases}x=\frac{1+\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\)

16 tháng 5 2017

\(Vt=\left(x-y\right)^2+\frac{\left(1-xy\right)}{\left(x-y\right)^2}^2+2xy\ge2\left(1-xy\right)+2xy=2\)(AM-GM)

14 tháng 1 2019

a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)

Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)

Cộng theo vế các bất phương trình trên ta có0:

 \(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)

\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)

Dấu "=" xảy ra khi và chỉ khi x=y=z=1

b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)

Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:

\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)

8 tháng 2 2019

1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)

mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)

=>\(x+y+z=< 3\)

ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy  schwarz)