Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-10\right)=\left(x_2-10\right)=\left(x_3-10\right)=...=\left(x_9-10\right)\\x_1+x_2+x_3+...+x_9=90\end{matrix}\right.\)
=>x1=x2=x3=...=x9=10
x1+x2+x3+...+x2008=2008
\(\Leftrightarrow\)(x1-1)+(x2-1)+(x3-1)+...+(x2008-1)=0 (1)
x31+x32+x33+...+x32008=x41+x42+x43+...+x42008
Lấy vế phải trừ vế trái ta được :
x31(x1-1)+x32(x2-1)+x33(x3-1)+...+x32008(x2008-1)=0 (2)
Lấy (1) (2) rồi đặt nhân tử chung là ra cái này
(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Ta thấy (x31-1)(x1-1) = (x1-1)(x21+x1+1)(x1-1) = (x1-1)2(x21+x1+1)\(\ge\)0 Với mọi x
CMTT : (x23-1)(x2-1) \(\ge\)0 Với mọi x
.............................................
(x20083-1)(x2008-1) \(\ge\)0 Với mọi x
\(\Rightarrow\)(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)\(\ge\)0
Mà(x31-1)(x1-1)+(x32-1)(x2-1)+(x33-1)(x3-1)+...+(x32008-1)(x2008-1)=0
Đến đây bạn tự suy ra x1=1; x2=1;...;x2008=1 nhé!
Mình hơi bận nên không giải tiếp được bán nhé!
Mong bạn thông cảm
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
\(max\left\{x_1;x_2;...;x_n\right\}\ge\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+...+\left|x_{n-1}-x_n\right|+\left|x_n-x_1\right|}{2n}\)
Đề Tuyển sinh lớp 10 chuyên toán ĐHSP Hà Nội 2012-2013
NGUỒN:CHÉP MẠNG,CHÉP Y CHANG CHỨ E KO HIỂU GÌ ĐÂU(vài dòng đầu)-lỡ như anh cần mak ko có key. ( VÔ TÌNH TRA TÀI LIỆU THÌ THẦY BÀI NÀY )
P/S:Xin đừng bốc phốt.
Để ý trong 2 số thực x,y bất kỳ luôn có
\(Min\left\{x;y\right\}\le x,y\le Max\left\{x,y\right\}\) và \(Max\left\{x;y\right\}=\frac{x+y+\left|x-y\right|}{2}\)
Ta có:
\(\frac{x_1+x_2+...+x_n}{n}+\frac{\left|x_1-x_2\right|+\left|x_2-x_3\right|+.....+\left|x_n-x_1\right|}{2n}\)
\(=\frac{x_1+x_2+\left|x_1-x_2\right|}{2n}+\frac{x_2+x_3+\left|x_2-x_3\right|}{2n}+.....+\frac{x_3+x_4+\left|x_3-x_4\right|}{2n}+\frac{x_4+x_5+\left|x_4-x_5\right|}{2n}\)
\(\le\frac{Max\left\{x_1;x_2\right\}+Max\left\{x_2;x_3\right\}+.....+Max\left\{x_n;x_1\right\}}{n}\)
\(\le Max\left\{x_1;x_2;x_3;.....;x_n\right\}^{đpcm}\)
Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1)
\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)
Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)
Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)
hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2)
giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)
\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)
nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)
đặc : \(A=x_1+x_2+x_3+...+x_9=10\) ; \(B=x_1+2x_2+3x_3+...+9x_9=18\)
ta có : \(B-20A=-\left(19x_1+18x_2+17x_3+...+11x_9\right)=-182\)
\(\Leftrightarrow19x_1+18x_2+17x_3+...+11x_9=182=C\) (1)
ta lấy \(A-B=D=x_2+2x_3+3x_4+...+8x_9=8\)
\(\Rightarrow11D=11x_2+11.2x_3+11.3x_4+...+11.8x_9=88\)
ta dễ thấy : \(1.19x_1+2.18x_2+3.17x_3+...+9.11x_9\ge C+D=270\left(đpcm\right)\)
A- B = D
Hay B - A = D ạ?
Nó cứ ngược ngược