K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

Do a,b,c,d,e>0 mà a+b+c+d+e=1 => a,b,c,d,e<1

Ta có:tổng không đổi,tích lớn nhất khi 2 số bằng nhau

=> ab lớn nhất <=> a=b

     bc lớn nhất <=> b=c

     cd lớn nhất <=> c=d

     de lớn nhất <=> d=e

=> ab+bc+cd+de đạt GTLN <=> a=b=c=d=e

=> a=b=c=d=e=1/5=0,2

=> ab+bc+cd+de=0,16

15 tháng 2 2016

em chưa học

15 tháng 2 2016

em chưa học ạ !!!!!!! xl anh

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:

$a\leq 12a$

$2b^2=2b.b\leq 4b\leq 12b$

$3c^3=3c^2.c\leq 3.2^2.c=12c$

$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

23 tháng 1 2020

Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)

Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)

\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)

\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:

\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)

Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)

\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..) 

Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\)  với \(0\le v\le1\)

Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)

Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)

Ta có đpcm.

P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.

23 tháng 1 2020

Quên: 

\(f\left(v\right)_{min}=2\Leftrightarrow\left(a;b;c\right)=\left(2;0;0\right)\) và các hoán vị.

\(f\left(v\right)_{max}=4\Leftrightarrow a=b=c=1\)

2 tháng 10 2021

Tham khảo:

Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức:  \(Q=\s... - Hoc24