Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+x+1=3y\Rightarrow x+\dfrac{1}{y}+\dfrac{x}{y}=3\)
Ta có:
\(x^3+1+1\ge3x\)
\(\dfrac{1}{y^3}+1+1\ge\dfrac{3}{y}\)
\(x^3+\dfrac{1}{y^3}+1\ge\dfrac{3x}{y}\)
Cộng vế:
\(2\left(x^3+\dfrac{1}{y^3}\right)+5\ge3\left(x+\dfrac{1}{y}+\dfrac{x}{y}\right)=9\)
\(\Rightarrow x^3+\dfrac{1}{y^3}\ge2\)
\(\Rightarrow x^3y^3+1\ge2y^3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
\(a^3+1+1\ge3a\)
\(b^3+1+1\ge3b\)
\(c^3+1+1\ge3c\)
\(2\left(a^3+b^3+c^3\right)\ge6abc\)
Cộng vế:
\(3\left(a^3+b^3+c^3\right)+6\ge3\left(a+b+c+2abc\right)=15\)
\(\Rightarrow a^3+b^3+c^3\ge3\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(x^3+y^3+y^3\ge3\sqrt[3]{x^3.y^3.y^3}=3xy^2\)
\(x^3+1+1\ge3x\)
\(2\left(y^3+1+1\right)\ge6y\)
Cộng vế:
\(2\left(x^3+2y^3\right)+6\ge3\left(x+2y+xy^2\right)=12\)
\(\Rightarrow x^3+2y^3\ge3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=1\)
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)
Ta có: x+y+z=1
nên \(\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
mà 3>0
nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
Thay x=-y vào biểu thức \(x+y+z=1\), ta được:
\(-y+y+z=1\)
hay z=1
Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:
\(\left(-y\right)^2+y^2+1=1\)
\(\Leftrightarrow y^2+y^2=0\)
\(\Leftrightarrow2y^2=0\)
hay y=0
Vì x=-y
và y=0
nên x=0
Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:
\(P=0^{2008}+0^{2009}+1^{2010}=1\)
Vậy: P=1
nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả
bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
\(x^3+x\ge2\sqrt{x^4}=2x^2\)
Tương tự:
\(y^3+y\ge2y^2\)
\(z^3+z\ge2z^2\)
Cộng vế:
\(x^3+y^3+z^3+x+y+z\ge2\left(x^2+y^2+z^2\right)=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
giup e (e cam on)
https://hoc24.vn/cau-hoi/cho-ham-so-yfleftxright-x24x5tim-m-defleftleftxrightright-leftm1rightleftfleftxrightrightm0-co-8-nghiem-phan-biet.2499562346765