Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2\left(x^2+y^2\right)=1+xy\)
\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)
\(P=7\left(x^4+y^4\right)+4x^2y^2\)
\(=7x^4+7y^4+4x^2y^2\)
\(\Rightarrow P=28x^3+28y^3+16xy\)
\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)
\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)
x,y>0 => theo bdt AM-GM thì x+y >/ 2 căn (xy)=2 , x^2+y^2 >/ 2xy=2 (do xy=1)
P=(x+y+1)(x^2+y^2)+4/(x+y)
>/ 2(x+y+1)+4/(x+y)=[(x+y)+4/(x+y)]+(x+y+2)
x,y>0=>x+y>0 => theo bdt AM-GM thì P >/ 2.2+2+2=8
minP=8
Ta có \(\left(x+y\right)xy=x^2-xy+y^2\)
=> \(\frac{1}{x}+\frac{1}{y}=\frac{1}{x^2}+\frac{1}{y^2}-\frac{1}{xy}\)
MÀ \(\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)^2,\frac{1}{xy}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)^{^2}\)
=> \(\frac{1}{x}+\frac{1}{y}\le4\)
\(A=\frac{1}{x^3}+\frac{1}{y^3}=\frac{x^3+y^3}{x^3y^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^2\le16\)
Vậy MaxA=16 khi x=y=1/2
ĐẶt \(\left(x,y,z\right)\rightarrow\left(a,b,c\right)\) ( cho dễ nhìn thôi ko có ý j cả :) )
Áp dụng BĐT AM-GM ta có:
\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}=\frac{1}{2\sqrt{bc}}\)
Tương tự cho 2 BĐT còn lại rồi cộng lại :
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Lại theo AM-GM có
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) khi đó
\(P\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)
Xảy ra khi \(a=b=c=1\)