\(\dfrac{x^2}{y-1}+\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2021

Áp dụng BĐT AM-GM:

\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)

\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)

\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)

\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)

\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)

NV
21 tháng 8 2021

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)

Cộng vế:

\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)

Dấu "=" xảy ra khi \(x=y=2\)

27 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\dfrac{y\left(x+1\right)}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{z\left(y+1\right)}{2};\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{x\left(z+1\right)}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(Q\ge\left(x+y+z+3\right)-\dfrac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\dfrac{xy+yz+xz+x+y+z}{2}\)

\(\ge6-\dfrac{\dfrac{\left(x+y+z\right)^2}{3}+3}{2}=6-3=3\)

Đẳng thức xảy ra khi \(x=y=z=1\)

20 tháng 4 2018

p>=4/(y(x+z)=4/(1-(y-1)^2>=4

khi y=1 ,x=z=1/2

17 tháng 6 2019

12. Ta có \(ab\le\frac{a^2+b^2}{2}\)

=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)

Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)

=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)

=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)

Khi đó 

\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)

Dấu bằng xảy ra khi a=b=c=1

Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1

17 tháng 6 2019

13.  Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)

=> \(1\ge\frac{9}{a+b+c+3}\)

=> \(a+b+c\ge6\)

Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)

Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)

Cộng 3 BT trên ta có

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)

Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)

=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)

Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)

<=> \(a^2+b^2\ge2ab\)(luôn đúng )

=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)

=> \(P\ge2\)

Vậy \(MinP=2\)khi a=b=c=2

Lưu ý : Chỗ .... là tương tự 

24 tháng 4 2017

ta có:\(P=\sum\dfrac{y^2z^2}{x\left(y^2+z^2\right)}=\sum\dfrac{\dfrac{1}{x}}{\dfrac{1}{y^2}+\dfrac{1}{z^2}}\)

đặt \(\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{1}{z}\right)=\left(a;b;c\right)\)thì giả thiết trở thành : \(a^2+b^2+c^2=1\).tìm Min \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{a^2+c^2}+\dfrac{c}{a^2+b^2}\)

ta có:\(\dfrac{a}{b^2+c^2}=\dfrac{a}{1-a^2}=\dfrac{a^2}{a\left(1-a^2\right)}\)

Áp dụng bất đẳng thức cauchy:

\(\left[a\left(1-a^2\right)\right]^2=\dfrac{1}{2}.2a^2\left(1-a^2\right)\left(1-a^2\right)\le\dfrac{1}{54}\left(2a^2+1-a^2+1-a^2\right)^3=\dfrac{4}{27}\)

\(\Rightarrow a\left(1-a^2\right)\le\dfrac{2}{3\sqrt{3}}\)\(\Rightarrow\dfrac{a^2}{a\left(1-a^2\right)}\ge\dfrac{3\sqrt{3}}{2}a^2\)

tương tự với các phân thức còn lại ta có:

\(P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)

hay \(x=y=z=\sqrt{3}\)

24 tháng 4 2017

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) Thì bài toán trở thành

Cho \(a^2+b^2+c^2=1\) tính GTNN của \(P=\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{a^2+b^2}\)

Ta có:

\(a^2+b^2+c^2=1\)

\(\Rightarrow a^2+b^2=1-c^2\)

\(\Rightarrow\dfrac{c}{a^2+b^2}=\dfrac{c^2}{c\left(1-c^2\right)}\)

Mà ta có: \(2c^2\left(1-c^2\right)\left(1-c^2\right)\le\dfrac{\left(2c^2+1-c^2+1-c^2\right)^3}{27}=\dfrac{8}{27}\)

\(\Rightarrow c\left(1-c^2\right)\le\dfrac{2}{3\sqrt{3}}\)

\(\Rightarrow\dfrac{c^2}{c\left(1-c^2\right)}\ge\dfrac{3\sqrt{3}c^2}{2}\)

\(\Rightarrow\dfrac{c}{a^2+b^2}\ge\dfrac{3\sqrt{3}c^2}{2}\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{b}{c^2+a^2}\ge\dfrac{3\sqrt{3}b^2}{2}\left(2\right)\\\dfrac{a}{b^2+c^2}\ge\dfrac{3\sqrt{3}a^2}{2}\left(3\right)\end{matrix}\right.\)

Từ (1), (2), (3) \(\Rightarrow P\ge\dfrac{3\sqrt{3}}{2}\left(a^2+b^2+c^2\right)=\dfrac{3\sqrt{3}}{2}\)

Dấu = xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\) hay \(x=y=z=\sqrt{3}\)