Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Trong de thi hsg cap Thanh pho Ha Noi 2016-2017 co dap an do ban
theo bđt cauchy schwars dạng engel ta có
\(T=\dfrac{x^2}{y+x}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\)
Dấu '=' xảy ra khi x=y=z
pt \(\Leftrightarrow\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
\(\Leftrightarrow3\sqrt{2}x=2015\)
\(\Leftrightarrow x=\dfrac{2015}{3\sqrt{2}}\)
vậy \(T_{min}=\dfrac{2015}{\sqrt{2}}\) khi \(x=y=z=\dfrac{2015}{3\sqrt{2}}\)
ko chắc đúng nha bạn :))
Ta có: \(x^2-2y=-1\) \(\Leftrightarrow\) \(x^2-2y+1=0\) (1)
\(y^2+1=2z\) \(\Leftrightarrow y^2-2z+1=0\) (2)
\(2z^2=4x-2\) \(\Leftrightarrow2z^2-4x+2=0\)(3)
Cộng (1)(2)(3) theo vế:
\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\)
=> x-1=0; y-1=0; z-1=0
=>x=y=z
=>\(x^{2015}+y^{2015}+z^{2015}=1+1+1=3\)(đpcm)
Ta có: \(\sqrt{x^2+y^2}\ge\sqrt{\frac{1}{2}\left(x+y\right)^2}=\frac{\sqrt{2}}{2}\left(x+y\right).\)
Chứng minh tương tự rồi cộng vế với vế ta có:
\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}\ge\frac{\sqrt{2}}{2}\left(x+y+x+z+y+z\right)\)
\(\Rightarrow2015\ge\sqrt{2}\left(x+y+z\right)\)
Ta có: \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{3}{\sqrt[3]{\left(x+y\right)\left(x+z\right)\left(y+z\right)}}\ge\frac{3}{\frac{x+y+x+z+y+z}{3}}=\frac{9}{2\left(x+y+z\right)}\)
\(\Rightarrow\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{9}{2.\frac{2015}{\sqrt{2}}}=\frac{9\sqrt{2}}{4030}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{2015\sqrt{2}}{6}\)