Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát,
Giả sử a<b
Ta có: ab=bc => c<b
Ta có: bc=cd => c<d
Ta có: cd=de => e<d
Ta có: de=ea => a>e
Ta có: ea=ab => a>b ( trái với giả sử)
Vậy a=b=c=d=e
=> ba=bc=cd=de=ea
e<a
Vì \(ab+bc+ac=3\) => \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{abc}\)
Đặt \(\frac{1}{a}=x\): \(\frac{1}{b}=y\): \(\frac{1}{c}=z\)=> x+y+z=3xyz
Ta có \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{xyz}\ge13\)
AD BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) dấu = khi a=b=c ta có
\(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge\frac{36}{x+y+z}\)=\(\frac{36}{3xyz}=\frac{12}{xyz}\)
=> \(\frac{12}{xyz}+\frac{1}{xyz}\ge13\)
=> \(\frac{13}{xyz}\ge13\)
mà \(3xyz=x+y+z\ge3\sqrt[3]{xyz}\)dấu = khi x=y=z
=> xyz\(\le1\)
=> đpcm
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
Ta có
\(\frac{\left(a+b+c\right)^2}{3}\)> ab + bc + ca =3 => a + b + => 3
ta có abc > ( a+b+c) ( b + c -a ) ( c + a -b)
= ( a+b+c+ 2c) ( b + c -a +2a) ( c + a -b+2b)
> ( 3 -2c ) ( 3 - 2 a ) ( 3 - 2 b ) ( do a+b + c)> 3
= 12 ( xy + yz + zx ) -8 xyz - 18 ( x + y + z ) + 27
= 12 .3 - 8xyz - 18 .3 +27
9 - 8 xyz
ta có : xyz > 9 - 8 xyz + 8 xyz > 9 => xyz > 1
do đó : 4 ( a + b + c ) + abc > 4.3 + 1 = 13 (dpcm)
hok tốt
1) Áp dụng bất đẳng thức AM-GM :
\(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\ge2\sqrt{\frac{a^2+b^2}{ab}\cdot\frac{ab}{a^2+b^2}}=2\sqrt{1}=2\)
Dấu "=" xảy ra \(\Leftrightarrow a^2+b^2-ab=0\)
1) Anh phương làm lạ zậy?
Đặt \(x=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\) (do a.b > 0 nên ta không cần viết 2|ab| thay cho 2ab)
Khi đó bài toán trở thành: Tìm giá trị nhỏ nhất của biểu thức \(P=x+\frac{1}{x}\) (với \(x\ge2\))
Ta có: \(P=\left(\frac{1}{x}+\frac{x}{4}\right)+\frac{3x}{4}\ge2\sqrt{\frac{1}{x}.\frac{x}{4}}+\frac{3x}{4}\ge1+\frac{3.2}{4}=\frac{5}{2}\)
Vậy P min là 5/2 khi x = 2