Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
12. Ta có \(ab\le\frac{a^2+b^2}{2}\)
=> \(a^2-ab+3b^2+1\ge\frac{a^2}{2}+\frac{5}{2}b^2+1\)
Lại có \(\left(\frac{a^2}{2}+\frac{5}{2}b^2+1\right)\left(\frac{1}{2}+\frac{5}{2}+1\right)\ge\left(\frac{a}{2}+\frac{5}{2}b+1\right)^2\)
=> \(\sqrt{a^2-ab+3b^2+1}\ge\frac{a}{4}+\frac{5b}{4}+\frac{1}{2}\)
=> \(\frac{1}{\sqrt{a^2-ab+3b^2+1}}\le\frac{4}{a+b+b+b+b+b+1+1}\le\frac{4}{64}.\left(\frac{1}{a}+\frac{5}{b}+2\right)\)
Khi đó
\(P\le\frac{1}{16}\left(6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+6\right)\le\frac{3}{2}\)
Dấu bằng xảy ra khi a=b=c=1
Vậy \(MaxP=\frac{3}{2}\)khi a=b=c=1
13. Ta có \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\)
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{9}{a+b+c+3}\)( BĐT cosi)
=> \(1\ge\frac{9}{a+b+c+3}\)
=> \(a+b+c\ge6\)
Ta có \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
=> \(\frac{a^3-b^3}{a^2+ab+b^2}=a-b\)
Tương tự \(\frac{b^3-c^3}{b^2+bc+c^2}=b-c\),,\(\frac{c^3-a^2}{c^2+ac+a^2}=c-a\)
Cộng 3 BT trên ta có
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+c^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{c^2+bc+b^2}+\frac{a^3}{a^2+ac+c^2}\)
Khi đó \(2P=\frac{a^3+b^3}{a^2+ab+b^2}+...\)
=> \(2P=\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}+....\)
Xét \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)
<=> \(3\left(a^2-ab+b^2\right)\ge a^2+ab+b^2\)
<=> \(a^2+b^2\ge2ab\)(luôn đúng )
=> \(2P\ge\frac{1}{3}\left(a+b+b+c+a+c\right)=\frac{2}{3}.\left(a+b+c\right)\ge4\)
=> \(P\ge2\)
Vậy \(MinP=2\)khi a=b=c=2
Lưu ý : Chỗ .... là tương tự
\(ab+bc+ca=abc\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
\(P=\sum\frac{yz}{x+1}=\sum\frac{yz}{x+x+y+z}=\sum\frac{yz}{x+y+x+z}\le\frac{1}{4}\sum\left(\frac{yz}{x+y}+\frac{yz}{x+z}\right)\)
\(P\le\frac{1}{4}\left(x+y+z\right)=\frac{1}{4}\)
\(P_{max}=\frac{1}{4}\) khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{ab}{c+1}=\dfrac{ab}{\left(c+a\right)+\left(b+c\right)}\le\dfrac{1}{4}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}\right)\)
Tương tự cho 2 BĐT còn lại
\(\dfrac{bc}{a+1}\le\dfrac{1}{4}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}\right);\dfrac{ac}{b+1}\le\dfrac{1}{4}\left(\dfrac{ac}{a+b}+\dfrac{ac}{b+c}\right)\)
Cộng theo vế 3 BĐT trên ta có:
\(P\le\dfrac{1}{4}\left(\dfrac{ab}{a+c}+\dfrac{bc}{a+c}+\dfrac{bc}{a+b}+\dfrac{ac}{a+b}+\dfrac{ab}{b+c}+\dfrac{ac}{b+c}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{ab+bc}{a+c}+\dfrac{bc+ac}{a+b}+\dfrac{ab+ac}{b+c}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{b\left(a+c\right)}{a+c}+\dfrac{c\left(a+b\right)}{a+b}+\dfrac{a\left(b+c\right)}{b+c}\right)\)
\(=\dfrac{1}{4}\left(a+b+c\right)=\dfrac{1}{4}\cdot1=\dfrac{1}{4}\left(a+b+c=1\right)\)
Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ca+a^2}\le\dfrac{2}{3}\left(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\right)\le\dfrac{2}{3}\left[\left(a+b+c\right)-\dfrac{a+b+c}{2}\right]=\dfrac{2}{3}\left(2019-\dfrac{2019}{2}\right)=673\)
Cảm thấy bài của ''chị Anh'' có gì đó không ổn :D
#Fix
ĐK:\(\left\{{}\begin{matrix}ab+b+c\ne0\\ac+c+a\ne0\\bc+b+c\ne0\end{matrix}\right.\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có:
\(ab.\frac{1}{ab+a+b}\le ab.\frac{1}{9}\left(\frac{1}{ab}+\frac{1}{a}+\frac{1}{b}\right)\)\(=\frac{1}{9}+\frac{a}{9}+\frac{b}{9}\)
Tương tự: \(\frac{2ac}{ac+c+a}\le\frac{2}{9}+\frac{2a}{9}+\frac{2c}{9}\),\(\frac{3bc}{bc+b+c}\le\frac{3}{9}+\frac{3b}{9}+\frac{3c}{9}\)
Cộng vế theo vế, ta có;
\(\frac{ab}{ab+a+b}+\frac{2ac}{ac+c+a}+\frac{3bc}{bc+b+c}\le\frac{2}{3}+\frac{3a+4b+5c}{9}\)\(=\frac{2}{3}+\frac{12}{9}=2\)
\(''=''\Leftrightarrow a=b=c=1\)
ĐK: \(\left\{{}\begin{matrix}ab+a+b\ne0\\ac+a+c\ne0\\bc+b+c\ne0\end{matrix}\right.\)
Áp dụng BĐT Cô-si:
\(a+b\ge2ab\);\(a+c\ge2ac\);\(b+c\ge2bc\)
\(\Rightarrow A=\dfrac{ab}{ab+a+b}+\dfrac{3bc}{bc+b+c}+\dfrac{2ca}{ca+c+a}\)\(\le\dfrac{ab}{3ab}+\dfrac{2ac}{3ac}+\dfrac{3bc}{3bc}\)\(=\dfrac{1}{3}+\dfrac{2}{3}+1=2\)
Vậy Amax=2\(\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)\(\Rightarrow a=b=c\)và \(a,b,c\ne0\)
Thay vào 3a+4b+5c=12, ta có:
12a=12\(\Leftrightarrow a=b=c=1\)
Lời giải:
Ta có: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)
\(\Rightarrow (\sqrt{a-c}+\sqrt{b-c})^2=a+b\)
\(\Leftrightarrow a-c+b-c+2\sqrt{(a-c)(b-c)}=a+b\)
\(\Leftrightarrow \sqrt{(a-c)(b-c)}=c\)
Bình phương hai vế: \(c^2=(a-c)(b-c)\)
\(\Leftrightarrow ab=ac+bc(*)\)
----------------------------
Ta có: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}-\frac{ab}{c^2}\)
\(P=\frac{(bc)^3+(ac)^3-(ab)^3}{(abc)^2}\)
Xét tử số kết hợp với $(*)$
\((bc)^3+(ac)^3-(ab)^3=(bc+ac)^3-3bc.ac(bc+ac)-(ab)^3\)
\(=(ab)^3-3bc.ac.ab-(ab)^3=-3(abc)^2\)
Do đó: \(P=\frac{-3(abc)^2}{(abc)^2}=-3\)
Lời giải:
\(Q=\frac{ab}{c+ab}+\frac{ac}{b+ac}+\frac{bc}{a+bc}-\frac{1}{4abc}=\frac{ab}{c(a+b+c)+ab}+\frac{ac}{b(a+b+c)+ac}+\frac{bc}{a(a+b+c)+bc}-\frac{1}{4abc}\)
\(=\frac{ab}{(c+a)(c+b)}+\frac{ac}{(b+a)(b+c)}+\frac{bc}{(a+b)(a+c)}-\frac{1}{4abc}\)
\(=\frac{ab(a+b)+ac(a+c)+bc(b+c)}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\)
\(=\frac{(a+b)(b+c)(c+a)-2abc}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\) (đẳng thức quen thuộc \((a+b)(b+c)(c+a)=ab(a+b)+bc(b+c)+ca(c+a)+2abc\) )
\(=1-\left(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\right)\)
Áp dụng BĐT AM-GM:
\(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq 2\sqrt{\frac{1}{54(a+b)(b+c)(c+a)}}\).
Mà \(2=(a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\Rightarrow (a+b)(b+c)(c+a)\leq \frac{8}{27}\)
\(\Rightarrow \frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq \frac{1}{2}\)
\(1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\)
\(\Rightarrow \frac{13}{54abc}\geq \frac{13}{2}\)
Do đó: \(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\geq 7\)
\(\Rightarrow Q\leq 1-7=-6=Q_{\max}\)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
bạn ơi lí do vì sao ở cái biểu thức bạn rút gọn là \(1-\left(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{4abc}\right)\)
nhưng bạn dùng bđt cô-si lại là
\(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{108abc}\)
\(\dfrac{1}{4abc}\) bạn không dùng mà bạn lại dùng là \(\dfrac{1}{108abc}\) vậy bạn?
Bạn có thể giải thích rõ chỗ đó cho mình được không bạn?