K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

Ta có: x + y = a + b

<=> (x + y)2 = (a + b)2

<=> x2 + 2xy + y2 = a2 + 2ab + b2

<=> 2xy = 2ab (vì x2 + y2 = a2 + b2)

<=> xy = ab <=> x2y2 = a2b2

Lại có: x4 + y4 = (x2 + y2)2 - 2x2y2

  a4   + b4 = (a2 + b2)2 - 2a2b2

Mà x2y2 = a2b2 (cm) ; x2 + y2 = a2 + b2

=> x4 + y4 = a4 + b4

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

a)

$A=x^3+y^3+3xy(x^2+y^2)=(x+y)^3-3xy(x+y)+3xy[(x+y)^2-2xy]$

$=1^3-3xy.1+3xy(1-2xy)=1-6x^2y^2$

b)

$B=x^4+y^4+7xy(x^2+y^2)+12x^2y^2+x^3+y^3$

Ta có:

$x^2+y^2=(x+y)^2-2xy=1-2xy$

$x^3+y^3=(x+y)^3-3xy(x+y)=1-3xy$

$x^4+y^4=(x^2+y^2)^2-2x^2y^2=(1-2xy)^2-2x^2y^2=2x^2y^2-4xy+1$

Do đó:

$B=2x^2y^2-4xy+1+7xy(1-2xy)+12x^2y^2+1-3xy=2$