Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 là: . C 7 5
Số có 5 chữ số khác nhau sắp xếp theo chiều tăng dần từ tập số 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 có a = 0 là: 1 C 6 4 = C 6 4 .
Vậy số các chữ số cần tìm theo yêu cầu của đề bài là: C 7 5 - C 6 4 .
Chọn B.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Xét \(( a^2 + b^2 + c^2 + d^2 ) - ( a + b + c + d)\)
\(= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)\)
Vì a là số nguyên dương nên $a$, $(a – 1)$ là hai số tự nhiên liên tiếp
\(\Rightarrow a-1⋮2\)
Tương tự ta có $b(b-1)$; $c(c-1)$; $d(d-1)$ đều chia hết cho 2
=> $a(a -1) + b( b -1) + c( c – 1) + d( d – 1)$ là số chẵn
Lại có \(a^2 + c^2 = b^2 + d^2=> a^2 + b^2 + c^2 + d^2 = 2( b^2 + d^2)\) là số chẵn.
Do đó $a + b + c + d$ là số chẵn mà $a + b + c + d > 2$ (Do \(a,b,c,d\in N^{sao}\))
\(\Rightarrow\) $a + b + c + d$ là hợp số.
Đáp án A.
Ta có S : x + a 2 2 + y + b 2 2 + z + c 2 2 = a 2 + b 2 + c 2 4 - d có I - a 2 ; - b 2 ; - c 2
Vì I ∈ d ⇒ I 5 + t ; - 2 - 4 t ; - 1 - 4 t và (S) tiếp xúc với (P) nên d I ; P = R
3 . 5 + t - - 2 - 4 t - 3 . - 1 - 4 t - 1 3 2 + - 1 2 + - 3 2 = 19 ⇔ t + 1 = 1 ⇔ [ t = 0 t = 2
⇒ [ I ( 5 ; - 2 ; - 1 ) I ( 3 ; 6 ; 7 ) ⇒ [ a , b , c , d = - 10 ; 4 ; 2 ; 47 a , b , c , d = - 6 ; - 12 ; - 14 ; 75
Thử lại với a 2 + b 2 + c 2 4 - d = R 2 = 19 thì chỉ có trường hợp {-6;-12;-14;75} thỏa
2 a . 5 b = 2 c . 5 d ⇔ ln 2 a . 5 b = ln 2 c . 5 d ⇔ a ln 2 + b ln 5 = c ln 2 + d ln 5 ⇔ a - c ln 2 = d - b ln 5
Đáp án D