Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a,b,c là 3 số thực khác nhau và khác 0 nên a-b, b-c, a-c khác 0. Do đó:
a2- b= b2- c <=> a2 -b2 =b -c <=>(a-b)(a+b)=b-c => a+b =(b-c)/(a-b)
cmtt ta có b+c=(c-a)/(b-c) ; c+a = (a-b)/(c-a). Như vậy ta tính được P=1
a\(^2\)+ b\(^2\) + c\(^2\) = 1⇒ \(\left|a\right|\); \(\left|b\right|\) ; \(\left|c\right|\) ≤ 1
⇒ \(\left|a^3\right|\) ≤ a\(^2\) ; \(\left|b^3\right|\) ≤ b\(^2\) ; \(\left|c^3\right|\) ≤ c\(^2\)
⇒a\(^3\)+ b\(^3\)+ c\(^3\) ≤ \(\left|a^3\right|\) + \(\left|b^3\right|\) + \(\left|c^3\right|\) ≤ a\(^2\) + b\(^2\) + c\(^2\) = 1
Dấu "=" xảy ra khi( a;b;c) = (1;0;0) ; (0;1;0) ; (0;0;1)
Vậy S = 0 + 0 + 1 = 1
Ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a}+\frac{1}{b}=-\frac{1}{c}\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^3=\left(-\frac{1}{c}\right)^3\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+3\frac{1}{a}.\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)=-\frac{1}{c^3}\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-3\frac{1}{a}\frac{1}{b}\left(-\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\frac{1}{abc}=\frac{3}{abc}\)
Ta lại có :
\(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{bca}{b^3}+\frac{cab}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)=abc.\frac{3}{abc}=3\)
\(\)
Bài làm:
Ta có: \(P=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
CM HĐT phụ:
Ta có: \(a^3+b^3+c^3=\left(a^3+b^3+c^3-3abc\right)+3abc\)
\(=\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\right]+3abc\)
\(=\left[\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\right]+3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc\)
Áp dụng vào trên ta được:
\(abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\left[\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}-\frac{1}{ab}-\frac{1}{bc}-\frac{1}{ca}\right)+\frac{3}{abc}\right]\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(P=abc.\frac{3}{abc}=3\)
Vậy P = 3
Ta có: a2 + b2 = (a + b)2 - 2ab = 62 - 2.4 = 28
a4 + b4 = (a2 + b2)2 - 2a2b2 = 282 - 2.42 = 752
Bài làm:
Ta có: \(P=2\left(a^2+b^2\right)-5c^2\)
\(P=\left(a^2+2ab+b^2\right)+\left(a^2-2ab+b^2\right)-5c^2\)
\(P=\left(a+b\right)^2+\left(a-b\right)^2-5c^2\)
\(P=\left[\left(a+b\right)^2-c^2\right]+\left[\left(a-b\right)^2-4c^2\right]\)
\(P=\left(a+b-c\right)\left(a+b+c\right)+\left(a-b-2c\right)\left(a-b+2c\right)\)
\(P=2\left(a+b+c\right)+\left(a-b-2c\right)\)
\(P=2a+2b+2c+a-b-2c\)
\(P=3a+b\)
Mà ta có: \(a+b-c=2\Leftrightarrow2\left(a+b-c\right)=4\) và \(a-b+2c=1\)
Cộng 2 vế trên vào ta được:
\(2\left(a+b-c\right)+a-b+2c=4+1\)
\(\Leftrightarrow2a+2b-2c+a-b+2c=5\)
\(\Leftrightarrow3a+b=5\)
\(\Leftrightarrow P=5\)
Vậy \(P=5\)
Tại sao ra đc dòng thứ 2 v bn?