
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


*Giá trị nhỏ nhất của A đặt được khi \(ab=12;bc=8\)tại điểm rơi \(a=3,b=4,c=2\)Ta áp dụng bất đẳng thức cho từng nhóm sau:
\(\left(\frac{a}{18};\frac{b}{24};\frac{2}{ab}\right),\left(\frac{a}{9};\frac{c}{6};\frac{2}{ca}\right),\left(\frac{b}{16};\frac{c}{8};\frac{2}{bc}\right),\left(\frac{a}{9};\frac{c}{6};\frac{b}{12};\frac{8}{abc}\right)\)
Áp dụng bất đẳng thức Cô si, ta có:
\(\frac{a}{18}+\frac{b}{24}+\frac{2}{ab}\ge3\sqrt[3]{\frac{a}{18}\cdot\frac{b}{24}\cdot\frac{2}{ab}}=\frac{1}{2}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{2}{ca}\ge3\sqrt[3]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{2}{ca}}=1\)
\(\frac{b}{16}+\frac{c}{8}+\frac{2}{bc}\ge3\sqrt[3]{\frac{b}{16}\cdot\frac{c}{8}\cdot\frac{2}{bc}}=\frac{3}{4}\)
\(\frac{a}{9}+\frac{c}{6}+\frac{b}{12}+\frac{8}{abc}\ge4\sqrt[4]{\frac{a}{9}\cdot\frac{c}{6}\cdot\frac{b}{12}\cdot\frac{8}{abc}}=\frac{4}{3}\)
\(\frac{13a}{18}+\frac{13b}{24}\ge2\sqrt{\frac{13a}{18}\cdot\frac{13b}{24}}\ge2\sqrt{\frac{13}{18}\cdot\frac{13}{24}\cdot12}=\frac{13}{3}\)
\(\frac{13b}{48}+\frac{13c}{24}\ge2\sqrt{\frac{13b}{48}\cdot\frac{13c}{24}}\ge2\sqrt{\frac{13}{48}\cdot\frac{13}{24}\cdot8}=\frac{13}{4}\)
Cộng theo vế các bất đẳng thức trên ta được:
\(\left(a+b+c\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+\frac{8}{abc}\ge\frac{121}{12}\left(đpcm\right)\)
Đẳng thức xảy ra khi \(a=3;b=4;c=2\)

Lời giải:
Đặt $\left(\frac{ab}{c}, \frac{bc}{a}, \frac{ca}{b}\right)=(x,y,z)$
$\Rightarrow xy=b^2; yz=c^2; xz=a^2$
Đề bài trở thành: Cho $x,y,z>0$ thỏa mãn $xy+yz+xz=3$. CMR $x+y+z=3$
Áp dụng hệ quả quen thuộc của BĐT AM-GM:
$(x+y+z)^2\geq 3(xy+yz+xz)=9$
$\Rightarrow x+y+z\geq 3$
(đpcm)
Dấu "=" xảy ra khi $x=y=z=1$ hay $a=b=c=1$

Hằng đẳng thức quen thuộc: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow a^2+b^2+c^2-ab-bc-ca=\frac{a^3+b^3+c^3-3abc}{6}\)
khi đó \(vT=\frac{a^3+b^3+c^3-3abc}{6}+abc=\frac{a^3+b^3+c^3+3abc}{6}\)
Cần chứng minh \(a^3+b^3+c^3+3abc\ge48\)
ta có: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)=216-3\left(6-a\right)\left(6-b\right)\left(6-c\right)\)
\(=216-18\left(ab+bc+ca\right)+3abc\)
do đó \(VT=216-18\left(ab+bc+ca\right)+6abc\)(*)
ta có bất đẳng thức phụ sau : với a,b,c là 3 cạnh của 1 tam giác thì \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
# : cách CM: dùng AM-GM lên google mà surt
ÁP dụng :\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=\left(6-2a\right)\left(6-2b\right)\left(6-2c\right)\)
\(abc\ge24\left(ab+bc+ca\right)-8abc-216\)\(\Leftrightarrow9abc\ge24\left(ab+bc+ca\right)-216\)
\(\Leftrightarrow6abc\ge16\left(ab+bc+ca\right)-144\)(**)
từ (*) và (**) ta có: \(VT\ge72-2\left(ab+bc+ca\right)\ge72-2.\frac{1}{3}\left(a+b+c\right)^2\)(AM-GM)
\(\Leftrightarrow VT\Rightarrow72-\frac{2}{3}.36=48\)(đpcm)
Dấu = xảy ra khi a=b=c=2

có ở trong câu hỏi tương tự nhé
\(S=13\left(\frac{a}{18}+\frac{c}{24}\right)+13\left(\frac{b}{24}+\frac{c}{48}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{2}{ab}\right)+\left(\frac{a}{18}+\frac{c}{24}+\frac{2}{ac}\right)+\left(\frac{b}{8}+\frac{c}{16}+\frac{2}{bc}\right)+\left(\frac{a}{9}+\frac{b}{6}+\frac{c}{12}+\frac{8}{abc}\right)\)Cô si các ngoặc là được nhé

Áp dụng bđt cô si ta có : \(a^2+bc\ge2\sqrt{a^2bc}=2a\sqrt{bc}\)\(< =>\frac{a}{a^2+bc}\le\frac{1}{2\sqrt{bc}}\)
Tương tự và cộng theo vế ta được \(LHS\le\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\)
Ta sẽ chứng minh bđt phụ sau\(\frac{1}{\sqrt{xy}}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Ta thấy \(\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}< =>\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{\sqrt{xy}}\)
Áp dụng bđt phụ trên ta có \(\frac{1}{2}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}\right)\le\frac{1}{2}\left[\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\right]\)
\(=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{\frac{1}{2}\left(ab+bc+ca\right)}{abc}\le\frac{\frac{1}{2}abc}{abc}=\frac{1}{2}\)(đpcm)
Dấu "=" xảy ra \(< =>a=b=c=3\)
bài này quan trọng là tìm đc cái bđt phụ đó thôi bạn
Áp dụng BĐT\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Ta Có \(\frac{a}{a^2+bc}\le\frac{a}{4}.\left(\frac{1}{a^2}+\frac{1}{bc}\right)\) và \(a^2+b^2+c^2\le abc\)
\(=>\frac{a}{a^2+bc}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{a^2}{a^2+b^2+c^2}\right)\)
Tương tự các cái khác ta có
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}\le\frac{a^2+b^2+c^2}{abc}\le1\)
\(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{1}{2}\left(dpcm\right)\)Dấu = xảy ra <=> a=b=c=3 "_"
Học tốt

Ta có
\(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{c\left(a+b+c\right)+ab}}\)\(=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\)\(=\sqrt{\frac{a}{c+a}}.\sqrt{\frac{b}{c+b}}\)\(\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)
Tương tự, ta có
\(\sqrt{\frac{bc}{a+bc}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)
\(\sqrt{\frac{ca}{b+ca}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{b+a}\right)}\)
Cộng vế theo vế của 3 bđt ta được đpcm

Cosi + Svac-xơ
Có : \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(a+b+c\le3\)
\(\frac{1}{4-\sqrt{ab}}+\frac{1}{4-\sqrt{bc}}+\frac{1}{4-\sqrt{ca}}\le\frac{1}{4-\frac{a+b}{2}}+\frac{1}{4-\frac{b+c}{2}}+\frac{1}{4-\frac{c+a}{2}}\)
\(=-\left(\frac{1}{\frac{a+b}{2}-4}+\frac{1}{\frac{b+c}{2}-4}+\frac{1}{\frac{c+a}{2}-4}\right)\le\frac{-\left(1+1+1\right)^2}{a+b+c-12}=\frac{-9}{3-12}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{}\text{}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)
Ta thấy: \(\text{}\text{}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)
\(\text{}\text{}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)
Do đó: P \(\ge2+4+8=14\)
Vậy: P(min)=14 khi: \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)