K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2023

Ta có thể sử dụng công thức Newton về đa thức để giải bài toán này. Đặt đa thức $P(x) = (x-a)(x-b)(x-c) = x^3 - (a+b+c)x^2 + (ab+bc+ca)x - abc$.

Do $a+b+c=0$, nên $P(x) = x^3 - 3kx - abc$ với $k = \frac{ab+bc+ca}{a+b+c}$.

Ta có thể tính được $a^2+b^2+c^2 = -2(ab+bc+ca)$.

Đặt $S_n = a^n + b^n + c^n$. Ta có thể suy ra các công thức sau:

$S_1 = 0$

$S_2 = a^2 + b^2 + c^2 = -2(ab+bc+ca)$

$S_3 = 3abc$

$S_4 = (a^2+b^2+c^2)^2 - 2(a^2b^2+b^2c^2+c^2a^2) = 2(ab+bc+ca)^2 - 3abc(a+b+c)$

$S_5 = 5(ab+bc+ca)(a^2+b^2+c^2) - 5abc(a+b+c)$

$S_6 = (a^2+b^2+c^2)^3 - 3(a^2+b^2+c^2)(a^2b^2+b^2c^2+c^2a^2) + 2(a^2b^2c^2)$

$S_7 = 7(ab+bc+ca)(a^2+b^2+c^2)^2 - 14abc(a^2+b^2+c^2) + 7a^2b^2c^2$

Từ đó, ta có thể tính được $S_1, S_2, S_3, S_4, S_5, S_6$ dựa trên các giá trị đã biết.

Đặt $T_n = a^n+b^n+c^n - S_n$. Ta có thể suy ra các công thức sau:

$T_1 = 0$

$T_2 = 2S_2$

$T_3 = 3S_3$

$T_4 = 2S_2^2 - 4S_4$

$T_5 = 5S_2S_3 - 5S_5$

$T_6 = 2S_2S_4 + 3S_3^2 - 6S_6$

$T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7$

Do $S_1=S_3=0$, nên $T_1=T_3=0$.

Từ $a+b+c=0$, ta có $a^2+b^2+c^2 = -2(ab+bc+ca)$. Do đó, $S_2 = 2(ab+bc+ca)$ và $S_4 = 2(ab+bc+ca)^2 - 3abc(a+b+c) = 2(ab+bc+ca)^2$.

Từ $a^7+b^7+c^7=0$, ta có $T_7 = 7S_2S_5 - 14S_3S_4 + 7S_7 = 7S_2S_5 - 14S_4S_3 + 7S_7 = 7S_7$.

Từ $T_7 = 7S_7$, ta có $S_7 = \frac{T_7}{7} = 0$.

Do đó, $T_6 = 2S_2S_4 + 3S_3^2 - 6S_6 = 2(2(ab+bc+ca))(2(ab+bc+ca)^2) + 3(abc)^2 - 6S_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$.

Từ $T_6 = 12(ab+bc+ca)^2 + 3(abc)^2 - 6S_6$, ta có $S_6 = \frac{1}{6}(12(ab+bc+ca)^2 + 3(abc

25 tháng 6 2023

Giải

Vì a + b + c = 0 nên a + b = -c

Ta có:

\(a^7+b^7=\left(a+b\right)\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =-c\left(a^6-a^5b+a^4b^2-a^3b^3+a^2b^4-ab^5+b^6\right)\\ =c\left(-a^6+a^5b-a^4b^2+a^3b^3-a^2b^4+ab^5-b^6\right)\\ =c\left[-\left(a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6\right)+\left(7a^5b+14a^4b^2+21a^3b^3+14a^2b^4+7ab^5\right)\right]\\ =c\left[-\left(a+b\right)^6+7ab\left(a^4+2a^3b+3a^2b^2+2ab^3+b^4\right)\right]\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)^2+2ab\left(a^2+b^2\right)+3a^2b^2-2a^2b^2\right]\right\}\\ =c\left\{-\left(a+b\right)^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =c\left\{-c^6+7ab\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\right\}\\ =-c^7+7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\\ \Rightarrow a^7+b^7+c^7=7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]\Rightarrow7abc\left[\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\right]=0\)TH1: \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2=0\)

Vì \(a^2,b^2,\left(a+b\right)^2,a^2b^2\ge0\) nên \(\left(a^2+b^2\right)\left(a+b\right)^2+a^2b^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi a = b = 0

Mà a + b + c = 0 nên suy ra c = 0

Vậy \(a^{2023}+b^{2023}+c^{2023}=0\)

TH2: abc = 0

Vì abc = 0 nên sẽ có ít nhất một trong ba số a, b, c = 0

Vì a, b, c có vai trò như nhau nên không mất tính tổng quát, giả sử \(c=0\)

Mà a + b + c = 0 nên a + b =0 hay a = -b

\(\Rightarrow a^{2023}+b^{2023}+c^{2023}=0\)

Kết luận: \(a^{2023}+b^{2023}+c^{2023}=0\)

5 tháng 1 2023

- Theo BĐT Cauchy ta có:

\(\sqrt{a.1}\le\dfrac{a+1}{2}\)

\(\sqrt{b.1}\le\dfrac{b+1}{2}\)

\(\sqrt{c.1}\le\dfrac{c+1}{2}\)

\(\sqrt{ab}\le\dfrac{a+b}{2}\)

\(\sqrt{bc}\le\dfrac{b+c}{2}\)

\(\sqrt{ca}\le\dfrac{c+a}{2}\)

\(\Rightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le\dfrac{3\left(a+b+c\right)+3}{2}=\dfrac{3.3+3}{2}=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Mà ta có: \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=6\)

\(\Rightarrow a=b=c=1\)

\(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}=\dfrac{1^{30}+1^4+1^{1975}}{1^{30}+1^4+1^{2023}}=1\)

5 tháng 1 2023

chờ bạn trả lời xong thì tui nghĩ ra hết chục bài thế rùi

AH
Akai Haruma
Giáo viên
25 tháng 11 2023

Đề là tìm GTNN hay GTLN hả bạn?

23 tháng 6 2023

Help me plsssssssssss

23 tháng 6 2023

Ta có: `a^2+2023=a^2+ab+bc+ca=a(a+b)+c(a+b)=(a+b)(c+a)`

Do vai trò ba biến `a,b,c` như nhau nên ta có: `b^2+2023=(b+c)(a+b);c^2+2023=(c+a)(b+c)`

`=>A=\sqrt(((a+b)(b+c)(c+a))^2)=|(a+b)(b+c)(c+a)|\inQQ`

8 tháng 8 2023

a) Gọi \(M\left(a;0\right)\) là giao điểm của (D) với trục Ox

\(M\in\left(D\right)\Rightarrow0=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-3\)

Vậy \(M\left(-3;0\right)\)

b) Gọi \(N\left(0;a\right)\) là giao điểm của (D) là trục Oy

\(N\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.0+\dfrac{3}{7}=\dfrac{3}{7}\)

Vậy \(N\left(0;\dfrac{3}{7}\right)\)

c) \(A\left(2023;a\right)\in\left(D\right)\Rightarrow a=\dfrac{1}{7}.2023+\dfrac{3}{7}\Leftrightarrow a=\dfrac{2026}{7}\)

Vậy \(A\left(2023;\dfrac{2026}{7}\right)\)

d) \(B\left(a;-2023\right)\in\left(D\right)\Rightarrow-2023=\dfrac{1}{7}a+\dfrac{3}{7}\Leftrightarrow a=-14164\)

Vậy \(B\left(-14164;-2023\right)\)

8 tháng 8 2023

loading...  

17 tháng 4 2022

Ta có \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xyz}=1\)

\(\Leftrightarrow\dfrac{\left(yz\right)^2+\left(xz\right)^2+\left(xy\right)^2+2xyz}{\left(xyz\right)^2}=1\)

<=> (xy)2 + (yz)2 + (zx)2 + 2xyz = (xyz)2 

<=> (xy)2 + (yz)2 + (xz)2 + 2xyz(x + y + z) = (xyz)2 

<=> (xy + yz + zx)2 = (xyz)2 

<=> \(\left[{}\begin{matrix}xy+yz+zx=xyz\\xy+yz+zx=-xyz\end{matrix}\right.\)

+) Khi xy + yz + zx = -xyz 

=> \(\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=-1< 0\left(\text{loại}\right)\)

=> xy + yz + zx = xyz 

<=> \(xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=xyz\Leftrightarrow xyz\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1\right)=0\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\)

<=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

<=> \(\dfrac{x+y}{xy}=\dfrac{-\left(x+y\right)}{\left(x+y+z\right)z}\)

<=> \(\left(x+y\right)\left(\dfrac{1}{xz+yz+z^2}+\dfrac{1}{xy}\right)=0\)

<=> \(\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(zx+yz+z^2\right)xy}=0\)

<=> \(\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

Khi x = -y => y = 1 => P = 1

Tương tự y = -z ; z = -x được P = 1

Vậy P = 1 

17 tháng 4 2022

tks b nha

 

NV
13 tháng 4 2021

BĐT này do giáo sư Vasile đề xuất, và đây là lời giải của ông ấy:

Do vai trò của các biến là như nhau, ko mất tính tổng quát, giả sử \(a^2=max\left\{a^2;b^2;c^2;d^2\right\}\)

\(\Rightarrow a^2\ge\dfrac{b^2+c^2+d^2}{3}\)

Đặt \(x^2=\dfrac{b^2+c^2+d^2}{3}\Rightarrow x^2\le a^2\) (1)

Đồng thời \(x^2=\dfrac{b^2+c^2+d^2}{3}\ge\dfrac{1}{9}\left(b+c+d\right)^2=\dfrac{a^2}{9}\Rightarrow a^2\le9x^2\) (2)

\(\left(1\right);\left(2\right)\Rightarrow\left(a^2-x^2\right)\left(a^2-9x^2\right)\le0\) (3)

Ta có:

\(b^4+c^4+d^4=\left(b^2+c^2+d^2\right)^2-2\left(b^2c^2+c^2d^2+b^2d^2\right)\le\left(b^2+c^2+d^2\right)^2-\dfrac{2}{3}\left(bc+cd+bd\right)^2\)

\(=\left(b^2+c^2+d^2\right)^2-\dfrac{1}{6}\left[\left(b+c+d\right)^2-\left(b^2+c^2+d^2\right)\right]^2=9x^4-\dfrac{1}{6}\left(a^2-3x^2\right)^2=\dfrac{45x^4+6a^2x^2-a^4}{6}\)

Do đó:

\(12\left(a^4+b^4+c^4+d^4\right)\le12a^4+12.\dfrac{45x^4+6a^2x^2-a^4}{6}=90x^4+12a^2x^2+10a^4\)

Nên ta chỉ cần chứng minh:

\(7\left(a^2+3x^2\right)^2\ge90x^4+12a^2x^2+10a^4\)

\(\Leftrightarrow a^4-10a^2x^2+9x^4\le0\)

\(\Leftrightarrow\left(a^2-9x^2\right)\left(a^2-x^2\right)\le0\) (đúng theo (3))

Vậy BĐT được chứng minh hoàn tất.

Dấu "=" xảy ra khi \(b=c=d=-\dfrac{a}{3}\) và các hoán vị của chúng