Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Nhận xét, với x ∈ 1 ; 2 thì f x = x − log 2 x ≤ 0 . Thật vậy, xét f ' x = x ln 2 − 1 x ln 2
→ f ' x = 0 ⇔ x = 1 ln 2 ⇒ max 1 ; 2 f x = max f 1 , f 1 ln 2 , f 2 = 0
Từ đây suy ra x − 1 ≤ log 2 x ⇒ log 2 3 x ≥ x − 1 3 với 1 ; 2 ⇒ 1 ≥ a − 1 3 + b − 1 3 + c − 1 3
Mặt khác cũng có x 3 − 3 x log 2 x ≤ x 3 − 3 x 1 − x = x 3 − 3 x 2 + 3 x với 1 ; 2
⇒ P − 3 ≤ x − 1 3 + y − 1 3 + z − 1 3 = 1 ⇒ P ≤ 4
Với
Khi đó
Dấu bằng đạt tại
⇒ a - 2 b = - 2
Chọn đáp án B.
Mẹo trắc nghiệm: Có
Khi đó
Khi đó a-2b
Chọn đáp án B.
Đáp án A.
Gọi M x , y là điểm biểu diễn số phức z.
Từ giả thiết, ta có z − 4 − 3 i = 5 ⇔ x − 4 2 + y − 3 2 = 5 ⇒ M thuộc đường tròn (C) tâm I 4 ; 3 , bán kính R = 5 . Khi đó P = M A + M B , với A − 1 ; 3 , B 1 ; − 1 .
Ta có
P 2 = M A 2 + M B 2 + 2 M A . M B ≤ 2 M A 2 + M B 2 .
Gọi E 0 ; 1 là trung điểm của AB
⇒ M E 2 = M A 2 + M B 2 2 − A B 2 4 .
Do đó P 2 ≤ 4 M E 2 + A B 2 mà
M E ≤ C E = 3 5 s u y r a P 2 ≤ 4. 3 5 2 + 2 5 2 = 200.
Với C là giao điểm của đường thẳng EI
với đường tròn (C).
Vậy P ≤ 10 2 . Dấu “=” xảy ra
⇔ M A = M B M = C ⇒ M 6 ; 4 ⇒ a + b = 10.
Đáp án C.
Đặt log 2 a = x log 2 b = y log 2 c = z ⇒ a = 2 x b = 2 y c = 2 z ⇒ P = 2 x 3 + 2 y 3 + 2 z 3 − 3 x .2 x + y .2 y + z .2 z ,
trong đó x 3 + y 3 + z 3 ≤ 1 và x , y , z ∈ 0 ; 1 .
Dễ chứng minh được 2 x ≤ x + 1 , ∀ x ∈ 0 ; 1 . Dấu “=” xảy ra ⇔ x = 0 ∨ x = 1 .
Suy ra
2 x − x 3 ≤ 1 ⇔ 2 x 3 ≤ 3. 2 x 2 . x − 3.2 x . x 2 + x 3 + 1 ⇒ 2 x 3 − 3 x .2 x ≤ 3 x .2 x 2 x − x − 1 + x 3 + 1 ≤ x 3 + 1 Từ đó suy ra P ≤ x 3 + 1 + y 3 + 1 + z 3 + 1 ≤ 4 .
Dấu bằng xảy ra khi trong ba số x , y , z có 1 số bằng 1 và hai số còn lại bằng 0. Do đó chọn C.
Đáp án B