Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
ap dung tinh chat ti le thuc ta co a/a+2b=b/b+2c+=c/c+2a=a+b+c/a+2b+b+2c+c+2a=1/3
do đóa/a+2b=b/b+2c=c/c+2a=1/3
hay a chia 3 = a+2b
b chia 3 =b+2c
c chia 3 =c+2a
ma a,b,c la cac so nguyen duong nen a,b,c chia het cho 3
nen a+b+c chia het 3
Bài làm:
Ta có: \(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Xét: \(\frac{a}{a+2b}=\frac{1}{3}\Leftrightarrow3a=a+2b\Leftrightarrow2a=2b\Rightarrow a=b\)
Tương tự xét các phân thức còn lại ta chứng minh được: \(a=b=c\)
Thay \(\hept{\begin{cases}b=a\\c=a\end{cases}}\)ta được \(a+b+c=3a⋮3\)
\(\Rightarrow a+b+c⋮3\)
Ta có: \(ab=c\left(a-b\right)\)
<=> \(c^2=ac-bc-ab+c^2\)
<=> \(c^2=a\left(c-b\right)+c\left(c-b\right)\)
<=> \(c^2=\left(c-b\right)\left(a+c\right)\)
Đặt: ( c - b ; a + c ) = d
=> \(c^2⋮d^2\)=> \(c⋮d\)(1)
và \(\hept{\begin{cases}c-b⋮d\\a+c⋮d\end{cases}}\)(2)
Từ (1); (2) => \(b;a⋮d\)(3)
Từ (1); (3) và (a; b ; c ) =1
=> d = 1 hay c - b; a + c nguyên tố cùng nhau
Mà \(\left(c-b\right)\left(a+c\right)=c^2\)là số chính phương
=> c - b ; a + c là 2 số chính phương
Khi đó tồn tại số nguyên dương u, v sao cho: \(c-b=u^2;a+c=v^2\)khi đó: \(c^2=u^2.v^2\)<=> c = uv ( vì c, u,, v nguyên dương )
Ta có: \(a-b=\left(a+c\right)+\left(c-b\right)-2c\)
\(=u^2+v^2-2uv=\left(u-v\right)^2\) là số chính phương.
a+3c=8
a+2b=9 => cần C/m 2a+2b-2c<=17
2a+3c+2b=17
a,b,c không âm=> 2b+3c>=2b-2c=> 2a+2b-2c<=17=> dpcm
đẳng thức trên xẩy ra khi c=0
N=0
c=0
a=8
b=1/2
Áp dụng TCDTSBN ta có :
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)-\left(a-c\right)}{x+y-z}=\frac{0}{x+y-z}=0\)
\(\Rightarrow\frac{a-b}{x}=0\Rightarrow a-b=0\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b-c}{y}=0\Rightarrow b-c=0\Rightarrow b=c\) (2)
\(\Rightarrow\frac{a-c}{z}=0\Rightarrow a-c=0\Rightarrow a=c\) (3)
Từ (1);(2) và (3) \(\Rightarrow a=b=c\) (đpcm)
tra mạng đi hỏi nhiều haha!!!
:V chưởng nhờ anh HUY chỉ cho hihi
nó học giỏi toán lắm đó hehe!!!!
nvcl
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{a-c}{z}=\frac{\left(a-b\right)+\left(b-c\right)+\left(a-c\right)}{x+y+z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow\frac{a-c}{z}=\frac{2\left(a-c\right)}{x+y+z}\)
\(\Leftrightarrow x+y+z=2z\)
Do x+y+z lẻ và 2z là số chẵn nên không tồn tại x,y,z=> Đề sai :))
Ta có :
Thay \(a+b+c=2016\) vào A ta có :
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\)\(A>1\)\(\left(1\right)\)
Lại có :
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)
Từ (1) và (2) suy ra : \(1< A< 2\)
Vậy A không phải là số nguyên
Chúc bạn học tốt ~
Ta có:
\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)
\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)
\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)
tự làm tiếp nhé!