K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2021

\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)

10 tháng 3 2018

Ta có : 

Thay \(a+b+c=2016\) vào A ta có : 

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(A>1\)\(\left(1\right)\)

Lại có : 

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\)\(A< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< A< 2\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~

10 tháng 3 2018

Ta có:

\(A=\frac{a}{2016-c}+\frac{b}{2016-a}+\frac{c}{2016-b}\)

\(A=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

tự làm tiếp nhé!
 

31 tháng 7 2017

Ta có: \(A=\dfrac{a}{2016-c}+\dfrac{b}{2016-a}+\dfrac{c}{2016-b}\)

\(=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\)

\(=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}\)

Lại có: \(\dfrac{a}{a+b}>\dfrac{a}{a+b+c};\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

\(\dfrac{a}{a+b}< \dfrac{a+b}{a+b+c};\dfrac{b}{b+c}< \dfrac{b+c}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+a}{a+b+c}\)

\(\Rightarrow A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{a+c}< \dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\) không phải số nguyên

5 tháng 4 2017

A = \(\frac{2016-b-c}{2016}\)- c +\(\frac{2016-a-c}{2016}\)- a + \(\frac{2016-a-b}{2016}\) - b

= 3 - \(\frac{2\left(a+b+c\right)}{2016}\)- (a + b + c)

= 3 - 2 - 2016 = -2015

Nó là số nguyên mà bạn.

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)

\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)

\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)

\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)

\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu 2:

Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)

\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)

Nếu $a+b+c+d\neq 0$

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)

\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)

Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)

\(\Rightarrow \frac{a+b}{c+d}=1\)

Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow M=1+1+1+1=4\)

7 tháng 1 2018

b, Có: a/b < c/d => ad < bc

 Xét a.(b+d)-b.(a+c) = ab+ad-ba-bc = ad-bc < 0

=> a.(b+d) < b.(a+c)

=> a/b < a+c/b+d

c, Đề phải là cho a+b+c = 2016 chứ bạn

Có : A = a/a+b+c-c + b/a+b+c-a + c/a+b+c-b = a/a+b + b/b+c + c/c+a

Vì a,b,c thuộc Z+ nên a/a+b > 0 ; b/b+c > 0 ; c/c+a > 0

=> A > a/a+b+c + b/a+b+c + c/a+b+c = 1

Lại có : a < a+b ; b < b+c ; c < c+a => 0 < a/a+b < a ; 0 < b/b+c < 1 ; 0 < c/c+a < 1

=> A < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2

=> 1 < A < 2

=> A ko phải là số tự nhiên

Tk mk nha

7 tháng 1 2018

a,ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU.

TA CÓ:\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{d}\)=\(\frac{d}{e}\)=>\(\frac{2a^2}{2b^2}\)=\(\frac{3b^2}{3c^2}\)=\(\frac{4c^2}{4d^2}\)=\(\frac{5d^2}{5e^2}\)=\(\frac{2a^2+3b^2+4c^2+5d^2}{2b^2+3c^2+4d^2+5e^2}\)(đfcm)

9 tháng 2 2019

Áp dụng ta đc:

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)

\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)

\(\Rightarrow P=6\)

\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)

\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)

\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)

Xét \(a+b+c\ne0\)

\(\Rightarrow a=b=c\)

Thay vào P ta được P=6

Xét \(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)

Thay vào P ta được P= -3

Vậy P có 2 gtri là ...........

19 tháng 12 2018

Đặt a/2016 = b/2017 = c/2018 = k => a=2016k

b=2017k

c=2018k

Ta có (a-c)^3=( 2016k-2018k)^3 = (k(2016-2018))^3 = (k(-2))^3 (1)

Ta lại có 8(a-b)^2*(b-c)= 8(2016k-2017k)^2*(2017k-2018k) = 8(k(2016-2017)^2*(k(2017-2018) = 2^3*(k(-1))^2*(k(-1)) = 2^3*k^2*1*k*(-1) = k^3*(-2)^3 = (k(-2))^3 (2)

Từ (1) và (2) suy ra (a-c0^3 = 8(a-b)^2*(b-c)

Nhớ tick mik nha hihi

19 tháng 12 2018

cảm ơn bạn nha