Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
\(a^2+4\left(b+c\right)^2-bc=4a\left(b+c\right)\)
\(\Rightarrow\left[a-2\left(b+c\right)\right]^2=bc\)
Do \(\left(b,c\right)=1\) và \(b.c\) là 1 số chính phương
\(\Rightarrow b,c\) đều là các số chính phương
\(\dfrac{a^2}{2ab^2-b^3+1}=m\in Z^+\Rightarrow a^2-2mb^2a.+mb^3-m=0\)
\(\Rightarrow\Delta=4m^2b^4-4mb^3+4m\) là SCP (1)
Ta dễ dàng chứng minh được:
\(4m^2b^4-4mb^3+4m>\left(2mb^2-b-1\right)^2\)
\(\Leftrightarrow4m\left(b^2+1\right)>\left(b+1\right)^2\)
Đúng do: \(2m.2\left(b^2+1\right)\ge2m\left(b+1\right)^2>\left(b+1\right)^2\)
Tương tự, ta cũng có: \(4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Leftrightarrow\left(b-1\right)^2+4m\left(b^2-1\right)>0\) (luôn đúng với b>1;m>0)
\(\Rightarrow\left(2mb^2-b-1\right)^2< 4m^2b^4-4mb^3+4m< \left(2mb^2-b+1\right)^2\)
\(\Rightarrow4m^2b^4-4mb^3+4m=\left(2mb^2-b\right)^2\)
\(\Rightarrow b^2=4m\)
\(\Rightarrow b\) chẵn \(\Rightarrow b=2k\Rightarrow m=k^2\)
Thế vào (1) \(\Rightarrow a^2-8k^4a+8k^5-k^2=0\)
\(\Leftrightarrow\left(a-k\right)\left(a-8k^4+k\right)=0\Rightarrow\left[{}\begin{matrix}a=k\\a=8k^4-k\end{matrix}\right.\)
Vậy nghiệm của pt là: \(\left(a;b\right)=\left(k;2k\right);\left(8k^4-k;2k\right)\) với k nguyên dương
Mải làm quên mất, cứ nghĩ là bài yêu cầu tìm nghiệm nguyên của pt
Nếu chỉ cần chứng minh A nguyên dương thì ko cần 3 dòng cuối nữa, đến đoạn \(m=k^2\) là số chính phương là xong rồi
Vì abc=1 nên có: \(a^3+b^3+c^3+3=\frac{a^3+b^3+c^3}{abc}+3=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}\)
\(\ge\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\)(1)
Đặt: \(\frac{a}{b+c}=X;\frac{b}{c+a}=Y;\frac{c}{a+b}=Z\)
Ta có: \(4X^2+4Y^2+4Z^2+3-4X-4Y-4Z=\left(2X-1\right)^2+\left(2Y-1\right)^2+\left(2Z-1\right)^2\ge0\)
=> \(4Z^2+4Y^2+4Z^2+3\ge4X+4Y+4Z=4\left(X+Y+Z\right)\)
=> \(\frac{4a^2}{\left(b+c\right)^2}+\frac{4b^2}{\left(c+a\right)^2}+\frac{4c^2}{\left(a+b\right)^2}+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
=> \(a^3+b^3+c^3+3\ge4\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
"=" xảy ra <=> a =b =c =1.\(\)