\(\frac{5b+2c\left(4+c^6\right)}{a+b+c}=1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 2 2020

Hai BĐT đều có dấu "=" xảy ra

a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)

\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y\)

b/ Áp dụng câu a:

\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

26 tháng 12 2018

cậu thử biến đổi tương xem thế nào....

26 tháng 12 2018

khó thế

15 tháng 4 2018

a, Vì a,b,c dương nên : \(a+b+c\ge3\sqrt[3]{abc}\)      (1)

 \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)    (2)

Nhân vế theo vế 1 và 2 ta có : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)

Mà a+b+c=1 nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)

15 tháng 4 2018

còn câu b nữa giúp với