Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x\)nguyên bất kì, ta có: \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x^2-1\right)\left(x^2-4\right)+5x\left(x^2-1\right)\)
\(=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)+5x\left(x-1\right)\left(x+1\right)\)
Có \(x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)là tích của \(5\)số tự nhiên liên tiếp nên chia hết cho \(2,3,5\)mà \(\left(2,3,5\right)=1\)nên nó chia hết cho \(2.3.5=30\).
\(x\left(x-1\right)\left(x+1\right)\)là tích của \(3\)số tự nhiên liên tiếp nên chia hết cho \(2,3\)mà \(\left(2,3\right)=1\)nên chia hết cho \(2.3=6\)do đó \(5x\left(x-1\right)\left(x+1\right)\)chia hết cho \(30\).
Vậy \(x^5-x\)chia hết cho \(30\).
Ta có:
\(a^5+b^5+c^5+d^5-\left(a+b+c+d\right)\)
\(=\left(a^5-a\right)+\left(b^5-b\right)+\left(c^5-c\right)+\left(d^5-d\right)\)chia hết cho \(30\)
nên \(\left(a^5+b^5+c^5+d^5\right)\equiv\left(a+b+c+d\right)\left(mod30\right)\)
mà \(a^5+b^5+c^5+d^5=30\left(c^5+d^5\right)⋮30\)
suy ra \(a+b+c+d\)chia hết cho \(30\).
Ta có a^5-a luôn chia hết cho 6
suy ra a^5+...+d^5 -2016 chia hết cho 6
dpcm
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Vì \(a-2,a-1,a,a+1,a+2\) là 5 số nguyên liên tiếp nên h của chúng chia hết cho 5 và chia hết cho 2
\(=>a^5-a⋮5\)(1)
Mà a-1 và a+1 là 2 số tự nhiên liên tiếp nên h chúng chia hết cho 2
\(a^5-a⋮2\)(2)
Từ (1) và (2) suy ra \(a^5-a⋮30\)
Tương tự ta có : \(b^5-b⋮30;c^5-c⋮30\)
\(=>a^5+b^5+c^5-\left(a+b+c\right)⋮30\)
Mà \(a+b+c=2020⋮30\) nên \(a^5+b^5+c^5⋮30\)
=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)
=>5(a^3+b^3+c^3+d^3) chia hết cho 6
=>a^3+b^3+c^3+d^3 chia hêt cho 6
a^3-a=a(a+1)(a-1) chia hết cho 3!=6
b^3-b=b(b+1)(b-1) chia hết cho 3!=6
c^3-c=c(c+1)(c-1) chia hết cho 3!=6
d^3-d=d(d+1)(d-1) chia hết cho 3!=6
=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6
=>a+b+c+d chia hết cho 6
a5 + b5 = 29(c5 + d5)
<=> a5 + b5 + c5 + d5 = 30(c5 + d5) \(⋮\)30 (1)
Xét hiệu a5 + b5 + c5 + d5 - (a + b + c + d)
= (a5 - a) + (b5 - b) + (c5 - c) + (d5 - d)
Ta có a5 - a = (a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1)
Nhận thấy : \(\hept{\begin{cases}\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮30\left(\text{tích 5 số nguyên liên tiếp}\right)\\5\left(a-1\right)a\left(a+1\right)⋮30\end{cases}}\)
=> a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1) \(⋮\)30
=> a5 - a \(⋮\)30
Tương tự ta chứng minh được b5 - b \(⋮\)30 ; c5 - c\(⋮\)30 ; d5 - d \(⋮\)30
=> (a5 - a) + (b5 - b) + (c5 - c) + (d5 - d) \(⋮\)30
=> a5 + b5 + c5 + d5 - (a + b + c + d) \(⋮\)30 (2)
Từ (1) và (2) => a + b + c + d \(⋮\)30