Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt k=a2+b2ab+1(k∈Z)k=a2+b2ab+1(k∈Z)
Giả sử kk không là số chính phương
Cố định số nguyên dương kk, sẽ tồn tại cặp (a,b)(a,b) . Ta kí hiệu
S={(a,b)∈NxN|a2+b2ab+1=k}S={(a,b)∈NxN|a2+b2ab+1=k}
Theo nguyên lí cực hạn thì các cặp thuộc SS tồn tại (A,B)(A,B) sao cho A+BA+B đạt min
Giả sử A≥B>0A≥B>0 . Cố định BB ta còn số nữa khác AA thảo phương trình k=x+B2xB+1k=x+B2xB+1
⇔x2−kBx+B2−k=0⇔x2−kBx+B2−k=0 phương trình có nghiệm AA
Theo Viet : {A+x2=kBA.x2=B2−k{A+x2=kBA.x2=B2−k
Suy ra x2=kB−A=B2−kAx2=kB−A=B2−kA
Dễ thấy x2x2 nguyên.
Nếu x2<0x2<0 thì x22−kBx2+B2−k≥x22+k+B2−k>0x22−kBx2+B2−k≥x22+k+B2−k>0 (vô lí) . Suy ra x2≥0x2≥0 do đó (x2,B)∈S(x2,B)∈S
Do A≥B>0⇒x2=B2−kA<A2−kA<AA≥B>0⇒x2=B2−kA<A2−kA<A
Suy ra x2+B<A+Bx2+B<A+B (trái với giả sử A+BA+B đạt min)
Suy ra kk là số chính phương
bai toan nay khó
khó mới hỏi chứ