\(P=\dfrac{\sqrt{1+x^3+y^3}}{xy}+\dfrac{\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1 2021

\(P\ge\dfrac{\sqrt{3\sqrt[3]{x^3y^3}}}{xy}+\dfrac{\sqrt{3\sqrt[3]{y^3z^3}}}{yz}+\dfrac{\sqrt{3\sqrt[3]{z^3x^3}}}{zx}\)

\(P\ge\sqrt{3}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3}.3\sqrt[3]{\dfrac{1}{\sqrt{xy.yz.zx}}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

16 tháng 1 2021

Ta có bất đẳng thức sau \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow\left(x+y\right)\left(x-y\right)^2\ge0.\)

Do đó:

\(P=\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xyz+xy\left(x+y\right)}}{xy}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\dfrac{1}{\sqrt{xy}}\cdot\dfrac{1}{\sqrt{yz}}\cdot\dfrac{1}{\sqrt{zx}}}=3\sqrt{3}\)

Đẳng thức xảy ra khi $x=y=z=1.$

4 tháng 12 2017

Ta xét BĐT phụ: \(1+x^3+y^3\ge xy\left(x+y+z\right)\)

\(x^3+y^3\ge xy\left(x+y\right)+xyz-1\)

\(x^3+y^3-xy\left(x+y\right)\ge0\)

\(\left(x+y\right)\left(x^2-xy+y^2\right)-xy\left(x+y\right)\ge0\)

\(\left(x+y\right)\left(x-y\right)^2\ge0\)( Luôn đúng, vậy BĐT phụ đúng)

\(\sum\dfrac{\sqrt{1+x^3+y^3}}{xy}\ge\sum\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}=\sqrt{x+y+z}.\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\ge\sqrt{3\sqrt[3]{xyz}}.\left(3\sqrt[3]{\dfrac{1}{\sqrt{x^2y^2z^2}}}\right)=3\sqrt{3}\)

GTNN của P là \(3\sqrt{3}\Leftrightarrow x=y=z=1\)

22 tháng 6 2018

Ta có \(x^3+y^3\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y+z\right)=xy\left(x+y+z\right)\)

Tương tự ta có

\(VT\ge\dfrac{\sqrt{xy\left(x+y+z\right)}}{xy}+\dfrac{\sqrt{yz\left(x+y+z\right)}}{yz}+\dfrac{\sqrt{zx\left(x+y+z\right)}}{zx}\)

\(=\sqrt{x+y+z}\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{x+y+z}.\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\)

\(\ge\sqrt{3\sqrt[3]{xyz}}.\dfrac{3\sqrt[6]{xyz}}{1}=3\sqrt{3}\)

\("="\Leftrightarrow x=y=z=1\)

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

17 tháng 4 2022

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

17 tháng 4 2022

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2

6 tháng 3 2018

Ta có: \(\left(x+y+z\right)\left(xy+yz+xz\right)\ge9xyz\)

\(VT=\dfrac{x}{1+yz}+\dfrac{y}{1+xz}+\dfrac{z}{1+xy}\)

\(=\dfrac{x^2}{x+xyz}+\dfrac{y^2}{y+xyz}+\dfrac{z^2}{z+xyz}\)

\(\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+3xyz}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z+\dfrac{\left(x+y+z\right)\left(xy+yz+xz\right)}{3}}\)

\(=\dfrac{3\left(x+y+z\right)}{4}\). Cần chứng minh:

\(\dfrac{3\left(x+y+z\right)}{4}\ge\dfrac{3\sqrt{3}}{4}\Leftrightarrow x+y+z\ge\sqrt{3}\)

BĐT cuối đúng vì \(x+y+z\ge\sqrt{3\left(xy+yz+xz\right)}=\sqrt{3}\)

\("="\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Ps: nospoiler

6 tháng 3 2018

Dùng cosi dạng engel là ra

20 tháng 8 2023

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

9 tháng 1 2018

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

9 tháng 1 2018

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))