K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NM
23 tháng 6 2016
\(M=\frac{x+y}{xy}.\frac{1}{z}\ge\frac{2\sqrt{xy}}{xy}.\frac{1}{z}=\frac{2}{z\sqrt{xy}}\ge\frac{2}{z\left(\frac{x+y}{2}\right)}=\frac{4}{z\left(x+y\right)}\)
\(=\frac{4}{z\left(1-z\right)}=\frac{4}{\frac{1}{4}-\left(z-\frac{1}{2}\right)^2}\ge16\)
Min M= 16 khi z=1/2 và x=y =1/4.
3 tháng 12 2019
M=x+yxy.1z≥2xy√xy.1z=2zxy√≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)
=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16
Min M= 16 khi z=1/2 và x=y =1/4.
Không biết có làm đúng không nữa ~ ~ ~
3 tháng 12 2019
Giải giúp mình bài này với le thuy linh :
Cho ba số dương x,y,z thoả mãn: 11+x+11+y+11+z=211+x+11+y+11+z=2 . Tìm giá trị lớn nhất của biểu thức P = xyz
Đặt \(A=\frac{x+y}{xyz}\)
Theo bài ra có ta có các số nguyên dương x,y,z có tổng =1
=> x+y+z=1
=> \(\left[\left(x+y\right)+z\right]^2=1\). Áp dụng BĐT \(\left(a+b\right)^2\ge4ab\)ta có:
\(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)
Nhân 2 vế với số dương \(\frac{x+y}{xyz}\)được
\(\frac{x+y}{xyz}\ge\frac{4z\left(x+y\right)^2}{xyz}\ge\frac{4x\cdot4xy}{xyz}=16\)
MinA=16 <=> \(\hept{\begin{cases}x+y=1\\x=y\\x+y+z=1\end{cases}\Leftrightarrow x=y=\frac{1}{4};z=\frac{1}{2}}\)
Vậy MinA =16 đạt được khi \(x=y=\frac{1}{4};z=\frac{1}{2}\)
là sao