Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1+x}{2}\ge\sqrt{x}\Rightarrow\left(\frac{1+x}{2}\right)^n\ge\sqrt{x^n}\) (1)
\(\frac{1+y}{2}\ge\sqrt{y}\Rightarrow\left(\frac{1+y}{2}\right)^n\ge\sqrt{y^n}\)(2)
\(\frac{1+z}{2}\ge\sqrt{z}\Rightarrow\left(\frac{1+z}{2}\right)^n\ge\sqrt{z^n}\)(3)
Từ 1,2,3 \(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\)
Áp dụng BĐT Cauchy cho 3 số ta có :
\(\sqrt{x^n}+\sqrt{y^n}+\sqrt{z^n}\ge3^3\sqrt{\sqrt{x^n}.\sqrt{y^n}.\sqrt{z^n}}=3\)
\(\Rightarrow\left(\frac{1+x}{2}\right)^n+\left(\frac{1+y}{2}\right)^n+\left(\frac{1+z}{2}\right)^n\ge3\)
Đẳng thức xảy ra <=> x = y = z = 1
1) Ta có ĐK: 0 < a,b,c < 1
\(\sqrt{\frac{a}{1-a}}=\frac{a}{\sqrt{a\left(1-a\right)}}\ge2a\) (BĐT AM-GM cho 2 số a và 1-a)
Tương tự, ta có \(\sqrt{\frac{b}{1-b}}=\frac{b}{\sqrt{b\left(1-b\right)}}\ge2b\) và \(\sqrt{\frac{c}{1-c}}=\frac{c}{\sqrt{c\left(1-c\right)}}\ge2c\)
⇒ \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}\ge2\left(a+b+c\right)=2\)(do a+b+c=1)
Dấu đẳng thức xảy ra \(\Leftrightarrow\) a = b = c = \(\frac{1}{2}\) (không thoả mãn điều kiện a+b+c=1)
Dấu đẳng thức trên không xảy ra được. Vậy ta có bất đẳng thức\(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
Đặt x-2=a; y-2=b; z-2=c (a,b,c>0)
Ta có: \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)
<=>\(\frac{1}{a+2}=1-\frac{1}{b+2}-\frac{1}{c+2}\Leftrightarrow\frac{1}{a+2}=\frac{1}{2}-\frac{1}{b+2}+\frac{1}{2}-\frac{1}{c+2}\)
<=>\(\frac{1}{a+2}=\frac{b}{2\left(b+2\right)}+\frac{c}{2\left(c+2\right)}\ge2\sqrt{\frac{bc}{4\left(b+2\right)\left(c+2\right)}}=\sqrt{\frac{bc}{\left(b+2\right)\left(c+2\right)}}\left(1\right)\)
Tương tự ta cũng có: \(\frac{1}{b+2}\ge\sqrt{\frac{ca}{\left(c+2\right)\left(a+2\right)}}\left(2\right);\frac{1}{c+2}\ge\sqrt{\frac{ab}{\left(a+2\right)\left(b+2\right)}}\left(3\right)\)
Nhân (1),(2),(3) vế theo vế ta được:
\(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\sqrt{\frac{\left(abc\right)^2}{\left[\left(a+2\right)\left(b+2\right)\left(c+2\right)\right]^2}}\)
<=> \(\frac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\frac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\le1\Leftrightarrow\left(x-2\right)\left(y-2\right)\left(z-2\right)\le1\) (đpcm)
Dấu "=" xảy ra khi a=b=c=3
Chia hai vế của cho xyz khác 0, ta cần chứng minh:
\(\left(1-\frac{2}{x}\right)\left(1-\frac{2}{y}\right)\left(1-\frac{2}{z}\right)\le\frac{1}{xyz}\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\). Bài toán trở thành:
Cho 0 <a,b,c \(< \frac{1}{2}\) thỏa mãn \(a+b+c=1\). Chứng minh rằng:
\(\left(1-2a\right)\left(1-2b\right)\left(1-2c\right)\le abc\)
\(\Leftrightarrow\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\le abc\)
BĐT đến đây trở về dạng quen thuộc! Hoặc không thì nó hiển nhiên đúng theo BĐT Schur
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( Với x,y >0)
Nhân cả 2 vế với 2 rồi áp dụng. Ra ngay
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)
\(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{3}{4}\)
\(=\frac{x^3}{1+z+y+yz}+\frac{y^3}{1+x+z+xz}+\frac{z^3}{1+y+x+xy}\)
\(=\frac{x^3}{1+x+y+2y}\ge\frac{x}{2}\Rightarrow TổngBPT\ge\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\ge\frac{2}{3}\left(đpcm\right)\)
(Không chắc à nha)
Ta có : \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\frac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có : \(\hept{\begin{cases}\frac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\frac{6y-z-x-2}{8}\left(2\right)\\\frac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\frac{6z-x-y-2}{8}\left(3\right)\end{cases}}\)
Từ (1) , (2) và (3)
\(\Rightarrow\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+z\right)\left(1+x\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
\(\ge\frac{6x-y-z-2}{8}+\frac{6y-z-x-2}{8}+\frac{6z-x-y-2}{8}\)
\(=\frac{1}{2}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Chúc bạn học tốt !!!