K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2020

BĐT của bạn bị ngược dấu, mà có vẻ các mẫu số cũng ko đúng (để ý mẫu số thứ 2 và thứ 3 đều có chung xy+xz ko hợp lý)

NV
13 tháng 6 2020

Bunhiacopxki: \(\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)\ge\left(xy+yz+zx\right)^2\)

\(\Rightarrow\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Thiết lập tương tự và cộng lại:

\(\Rightarrow VT\le\frac{xy\left(y^2+yz+zx\right)+yz\left(z^2+xy+zx\right)+zx\left(x^2+yz+xy\right)}{\left(xy+yz+zx\right)^2}\)

\(VT\le\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\)

Ta chỉ cần chứng minh: \(\frac{xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz}{\left(xy+yz+zx\right)^2}\le\frac{x^2+y^2+z^2}{xy+yz+zx}\)

\(\Leftrightarrow xy^3+xy^2z+x^2yz+yz^3+xy^2z+xyz^2+x^3z+xyz^2+x^2yz\le\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2yz+xy^2z+xyz^2\le x^3y+y^3z+z^3x\)

\(\Leftrightarrow\frac{x^2}{z}+\frac{y^2}{x}+\frac{z^2}{y}\ge x+y+z\) (đúng theo Cauchy-Schwarz)

Dấu "=" xảy ra khi \(x=y=z\)

13 tháng 6 2020

@Nguyễn Việt Lâm

17 tháng 6 2016

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

16 tháng 6 2016

bài của tui mà -_-

11 tháng 6 2016

chứng minh cái gì đấy hả bạn ơi ?

11 tháng 6 2016

akl quên vế sau

21 tháng 9 2018

\(3=x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\)

\(\Rightarrow xyz\le1\)

\(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\le\frac{x^2+1+1}{3}+\frac{y^2+1+1}{3}+\frac{z^2+1+1}{3}=3\)

Ta co:

\(A=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x\sqrt[3]{x}}{\sqrt[3]{xyz}}+\frac{y\sqrt[3]{y}}{\sqrt[3]{xyz}}+\frac{z\sqrt[3]{z}}{\sqrt[3]{xyz}}\)

\(\ge x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\)

\(\Rightarrow3A\ge3\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\ge\left(x\sqrt[3]{x}+y\sqrt[3]{y}+z\sqrt[3]{z}\right)\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}+\sqrt[3]{z^2}\right)\)

\(\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Rightarrow A\ge xy+yz+zx\)

25 tháng 5 2020

Áp dụng BĐT Cauchy - Schwarz, ta có: \(3\left(x^2+y^2+z^2\right)=\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3=x^2+y^2+z^2\)(Do \(x^2+y^2+z^2=3\))

Ta có: \(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}=\frac{x}{\sqrt[3]{yz.1}}+\frac{y}{\sqrt[3]{zx.1}}+\frac{z}{\sqrt[3]{xy.1}}\)

\(\ge\frac{x}{\frac{y+z+1}{3}}+\frac{y}{\frac{z+x+1}{3}}+\frac{z}{\frac{x+y+1}{3}}\)\(=\frac{3x}{y+z+1}+\frac{3y}{z+x+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+zx+x}+\frac{3y^2}{yz+xy+y}+\frac{3z^2}{zx+yz+z}\)\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+\left(x+y+z\right)}\)(Theo BĐT Cauchy - Schwarz dạng Engle)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)+x^2+y^2+z^2}=\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\)

\(\ge xy+yz+zx\)

Đẳng thức xảy ra khi x = y = z = 1

13 tháng 12 2015

\(VT=\frac{x^2}{x^3-xyz-2013x}+\frac{y^2}{y^3-xyz-2013y}+\frac{z^2}{z^3-xyz-2013z}\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz-2013\left(x+y+z\right)}\)

\(=\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3+3\left[\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\right]}=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}\)=VP

 

13 tháng 12 2015

đúng rồi ạ nhưng chỉ cần c/m đẳng thức phụ như thế này thôi ạ\(\frac{a^2}{x}+\frac{b^2}{y}\ge\frac{\left(a+b\right)^2}{x+y}\) =>\(\frac{\left(a+b\right)2}{x+y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) hay \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) là xong

1 tháng 1 2020

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\ge\frac{\left(x+y+z\right)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\left(1\right)\)

Áp dụng BĐT : AM - GM :

\(\sqrt[3]{x^3yz}\le\frac{x^2+xyz+1}{3};\sqrt[3]{y^3xz}\le\frac{y^2+xyz+1}{3};\sqrt[3]{z^3xy}\le\frac{z^2+xyz+1}{3}\)

\(\Rightarrow\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le\frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM - GM :

\(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow3\sqrt[3]{x^2y^2z^2}\le3\Leftrightarrow xyz\le1\)

Do đó : \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le3\left(2\right)\)

Tư (1) , (2) và sử dụng hệ quả :
\(x^2+y^2+z^2\ge xy+yz+zx:\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{3}=\frac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{3}\ge\frac{3\left(xy+yz+xz\right)}{3}\)\(=xy+yz+xz\)

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

NV
14 tháng 3 2020

\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(xz\right)^2}{zxy^2\left(x+z\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)

\(VT=\frac{2\left(yz\right)^2}{xy+zx}+\frac{2\left(xz\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\ge\frac{2\left(yz+xz+xy\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)