K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 8 2019

Bạn ghi cụ thể 2 cái delta phẩy ra được không, nhìn dạng thì mới biết được

NV
17 tháng 8 2019

Do xét tính có nghiệm nên chỉ cần quan tâm dấu của delta phẩy, vậy chỉ cần xét dấu của 1-48bc và 1-24ac là đủ

Cộng hai cái lại ta được 2-48bc-24ac=2-24c(2b+a)

Mà a+2b+3c=1 nên 2-24c(2b+a)=2-24c(1-3c)=2-24c+72c^2

=2(1-12c+36c^2)=2(1-6c)^2 luôn không âm

Do đó ít nhất 1 trong 2 delta kia sẽ không âm

11 tháng 6 2020

Sửa đề: a + 2b + 3c = 1

Xét: \(4x^2-4\left(2a+1\right)x+4a^2+192abc+=0\)

có: \(\Delta_1'=4\left(2a+1\right)^2-4\left(4a^2+192abc+1\right)=16a-768abc=16a\left(1-48bc\right)\)

Xét \(4x^2-4\left(2b+1\right)x+4b^2+96abc+1=0\)

có: \(\Delta_1'=4\left(2b+1\right)^2-4\left(4b^2+96abc+1\right)=16b-384abc=16b\left(1-24ac\right)\)

Ta lại xét: \(\left(1-48bc\right)+\left(1-24ac\right)=2-24c\left(a+2b\right)\)

\(=2-24c\left(1-3c\right)=2\left(36c^2-12c+1\right)=2\left(6c-1\right)^2\ge0\)với mọi c 

=> Tồn tại ít nhất 1 trong 2 số: \(\left(1-48bc\right);\left(1-24ac\right)\) không âm 

Vì a và b không âm 

=> Tồn tại ít nhất 1 trong 2 số : \(16a\left(1-48bc\right);16b\left(1-24ac\right)\)không âm 

=> Tồn tại it nhất 1 trong 2 \(\Delta_1';\Delta_2'\)không âm 

=> Có ít nhất 1 trong 2 phương trình trên có nghiệm.

10 tháng 3 2017

Xí câu BĐT:

ta cần chứng minh \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)

Áp dụng BĐT cauchy:

\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)

tương tự ta có:\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ac\ge2c^2\)

cả 2 vế các BĐT đều dương,cộng vế với vế ta có:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)

\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)

mà a2+b2+c2\(\ge ab+bc+ca\) ( chứng minh đầy đủ nhá)

do đó \(S=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-ab+bc+ca=ab+bc+ca\)

suy ra BĐT ban đầu đúng

dấu = xảy ra khi và chỉ khi a=b=c.

P/s: cách khác :Áp dụng BĐT cauchy-schwarz:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)

\(S\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

11 tháng 3 2017

Câu hệ này =))
b, Từ hệ đã cho ta thấy x,y > 0
Trừ vế cho vế pt (1) và (2) của hệ ta được:
\(x^4-y^4=4y-4x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=4\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2\right)+4\right]=0\)
\(\Leftrightarrow x-y=0\) ( Vì \(\left(x+y\right)\left(x^2+y^2\right)+4>0\) với x,y > 0)
\(\Leftrightarrow x=y\)
Với x = y thay vào pt đầu của hệ ta được:
\(x^4-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+2x+3>0\) )
\(\Leftrightarrow x=1\)
Với x=1 suy ra y=1
Vậy hệ đã cho có nghiệm duy nhất (x;y) = (1;1)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 1:
\(\frac{(x+1)^4}{(x^2+1)^2}+\frac{4x}{x^2+1}=6\)

\(\Leftrightarrow \frac{(x+1)^4+4x(x^2+1)}{(x^2+1)^2}=6\)

\(\Leftrightarrow \frac{x^4+8x^3+6x^2+8x+1}{(x^2+1)^2}=6\Rightarrow x^4+8x^3+6x^2+8x+1=6(x^2+1)^2\)

\(\Leftrightarrow x^4+8x^3+6x^2+8x+1=6(x^4+2x^2+1)\)

\(\Leftrightarrow 5x^4-8x^3+6x^2-8x+5=0\)

\(\Leftrightarrow 5x^3(x-1)-3x^2(x-1)+3x(x-1)-5(x-1)=0\)

\(\Leftrightarrow (x-1)(5x^3-3x^2+3x-5)=0\)

\(\Leftrightarrow (x-1)[5(x-1)(x^2+x+1)-3x(x-1)]=0\)

\(\Leftrightarrow (x-1)^2(5x^2+2x+5)=0\)

Dễ thấy \(5x^2+2x+5>0\), do đó \((x-1)^2=0\Leftrightarrow x=1\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 2: ĐK: \(x\geq 0\)

\(A=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{x^2+\sqrt{x}}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x^3}-1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x^3}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\frac{\sqrt{x}(\sqrt{x}-1)(x+\sqrt{x}+1)}{x+\sqrt{x}+1}-\frac{\sqrt{x}(\sqrt{x}+1)(x-\sqrt{x}+1)}{x-\sqrt{x}+1}+x+1\)

\(A=\sqrt{x}(\sqrt{x}-1)-\sqrt{x}(\sqrt{x}+1)+x+1\)

\(A=x-2\sqrt{x}+1=(\sqrt{x}-1)^2\)

14 tháng 7 2018

a) \(\left|3x+1\right|=\left|x+1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=x+1\\3x+1=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

c) \(\sqrt{9x^2-12x+4}=\sqrt{x^2}\)

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=\sqrt{x^2}\)

\(\Leftrightarrow\left|3x-2\right|=\left|x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=x\\3x-2=-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\end{matrix}\right.\)

d) \(\sqrt{x^2+4x+4}=\sqrt{4x^2-12x+9}\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=\sqrt{\left(2x-3\right)^2}\)

\(\Leftrightarrow\left|x+2\right|=\left|2x-3\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=2x-3\\x+2=-2x+3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{1}{3}\end{matrix}\right.\)

e) \(\left|x^2-1\right|+\left|x+1\right|=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow x=-1\)

f) \(\sqrt{x^2-8x+16}+\left|x+2\right|=0\)

\(\Leftrightarrow\sqrt{\left(x-4\right)^2}+\left|x+2\right|=0\)

\(\Leftrightarrow\left|x-4\right|+\left|x+2\right|=0\)

⇒ vô nghiệm