Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(3-2a\right)\left(3-2b\right)\left(3-2c\right)\)
\(\Leftrightarrow9abc\ge12\left(ab+bc+ca\right)-27\)
\(\Rightarrow abc\ge\dfrac{4}{3}\left(ab+bc+ca\right)-3\)
\(P\ge\dfrac{9}{a\left(b^2+bc+c^2\right)+b\left(c^2+ca+a^2\right)+c\left(a^2+ab+b^2\right)}+\dfrac{abc}{ab+bc+ca}=\dfrac{9}{\left(ab+bc+ca\right)\left(a+b+c\right)}+\dfrac{abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3}{ab+bc+ca}+\dfrac{abc}{ab+bc+ca}=\dfrac{3+abc}{ab+bc+ca}\)
\(\Rightarrow P\ge\dfrac{3+\dfrac{4}{3}\left(ab+bc+ca\right)-3}{ab+bc+ca}=\dfrac{4}{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta có : \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3\left(a+b\right)^2}{4}\)
\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\frac{\sqrt{3}\left(a+b\right)}{2}\)
Tương tự : \(\sqrt{b^2+bc+c^2}\ge\frac{\sqrt{3}\left(b+c\right)}{2}\) ; \(\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}\left(c+a\right)}{2}\)
Suy ra : \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\ge\frac{\sqrt{3}}{2}.2.\left(a+b+c\right)=\sqrt{3}\)
Vậy MIN B = \(\sqrt{3}\) \(\Leftrightarrow\begin{cases}a+b+c=1\\a=b=c\end{cases}\)
\(\Leftrightarrow a=b=c=\frac{1}{3}\)
Ta có:
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2\sqrt{\dfrac{ab}{c}.\dfrac{bc}{a}}=2b\)
Tương tự: \(\dfrac{ab}{c}+\dfrac{ca}{b}\ge2a\) ; \(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2c\)
Cộng vế:
\(2P\ge2\left(a+b+c\right)\Rightarrow P\ge a+b+c=1\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\dfrac{3}{2}\left(a^2+b^2\right)+\dfrac{1}{2}\left(a+b\right)^2}\ge\sqrt{\dfrac{3}{4}\left(a+b\right)^2+\dfrac{1}{2}\left(a+b\right)^2}=\dfrac{\sqrt{5}}{2}\left(a+b\right)\)
Tương tự:
\(\sqrt{2b^2+bc+2c^2}\ge\dfrac{\sqrt{5}}{2}\left(b+c\right)\) ; \(\sqrt{2c^2+ca+2a^2}\ge\dfrac{\sqrt{5}}{2}\left(c+a\right)\)
Cộng vế với vế:
\(P\ge\sqrt{5}\left(a+b+c\right)\ge\dfrac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^3=\dfrac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{9}\)
Ta có
\(\frac{\sqrt{1+a^3+b^3}}{ab}\ge\frac{\sqrt{3ab}}{ab}\ge\frac{\sqrt{3}}{\sqrt{ab}}\)
Tương tự
\(\frac{\sqrt{1+b^3+c^3}}{bc}\ge\frac{\sqrt{3}}{\sqrt{bc}}\)
\(\frac{\sqrt{1+a^3+c^3}}{ac}\ge\frac{\sqrt{3}}{\sqrt{ac}}\)
Từ đó
\(P\ge\sqrt{3}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ac}}\right)\ge\sqrt{3}\frac{3}{\sqrt[3]{abc}}=3\sqrt{3}\)
Đạt được khi a = b = 1
\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)
\(P_{max}=12\) khi \(a=b=c=1\)
Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)
\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)
\(\Rightarrow\sqrt{3}\le a+b+c\le3\)
\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)
\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)
\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị
Dự đoán: Min P = -1 khi a = b = c = 1
GIải:
Đặt \(p=a+b+c;q=ab+bc+ca;r=abc\) thì r = 1.
Cần chứng minh: \(p-2\sqrt{1+q}\ge-1\Leftrightarrow p+1\ge2\sqrt{1+q}\)
\(\Leftrightarrow p^2+2p+1\ge4\left(1+q\right)\)
\(\Leftrightarrow\left(p^2-4q\right)+\left(2p-3\right)\ge0\). Theo Schur:
\(p^3+9r\ge4pq\Leftrightarrow p\left(p^2-4q\right)\ge-9r=-9\)
\(\Rightarrow p^2-4q\ge-\frac{9}{p}\). Do đó cần chứng minh:
\(-\frac{9}{p}+2p-3\ge0\Leftrightarrow\frac{\left(p-3\right)\left(2p+3\right)}{p}\ge0\)
Đúng vì: \(p=a+b+c\ge3\sqrt[3]{abc}=3\)
Đẳng thức xảy ra khi a = b = c = 1