Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
By AM-GM'ineq: \(\hept{\begin{cases}1+\frac{a}{b}\ge2\sqrt{\frac{a}{b}}\\1+\frac{b}{c}\ge2\sqrt{\frac{b}{c}}\\1+\frac{c}{a}\ge2\sqrt{\frac{c}{a}}\end{cases}}\)
\(\Rightarrow LHS=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\ge8=RHS\)
The equality occurs when \(a=b=c\)
Hence \(P=\frac{a^3+b^3+c^3}{abc}=\frac{3a^3}{a^3}=3\)
Kiểm tra mà bạn vẫn có thời gian đưa câu hỏi ư! Bái phục mà thi j vậy bn?
\(a+b+c=7\Rightarrow a+b+c-1=6\)
Ta có:\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow49=23+2\left(ab+bc+ca\right)\Leftrightarrow ab+bc+ca=13\)
Lại có \(ab+c-6=ab+c-\left(a+b+c-1\right)=ab-a-b+1=\left(a-1\right)\left(b-1\right)\)
Tương tự \(bc+a-6=\left(b-1\right)\left(c-1\right)\)
\(ca+b-6=\left(c-1\right)\left(a-1\right)\)
\(\Rightarrow A=\frac{1}{\left(a-1\right)\left(b-1\right)}+\frac{1}{\left(b-1\right)\left(c-1\right)}+\frac{1}{\left(c-1\right)\left(a-1\right)}\)
\(=\frac{c-1+a-1+b-1}{\left(a-1\right)\left(b-1\right)\left(c-1\right)}=\frac{a+b+c-3}{abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1}\)
\(=\frac{7-3}{3-13+7-1}=-1\)
mk vẫn chưa nghĩ ra nx