Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa \(\dfrac{1}{3}\rightarrow3\)
Từ \(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=6\)
Ta có: \(\dfrac{1}{a^2}+1\ge\dfrac{2}{a};\dfrac{1}{b^2}+1\ge\dfrac{2}{b};\dfrac{1}{c^2}+1\ge\dfrac{2}{c}\)
Và \(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab};\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc};\dfrac{1}{c^2}+\dfrac{1}{a^2}\ge\dfrac{2}{ac}\)
Cộng theo vế các BĐT trên ta có:
\(3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow3\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\right)\ge12\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+1\ge4\)\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge3\)
\("="\Leftrightarrow a=b=c=1\)
Áp dụng bđt Cô si với 2 số dương là: \(\sqrt{\frac{b+c}{a}}\) và 1 ta có:
\(\left(\frac{b+c}{a}+1\right):2\ge\sqrt{\frac{b+c}{a}.1}\)
\(\Leftrightarrow\) \(\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\)
hay \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\left(1\right)\)
Tương tự như trên ta cũng có:
\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\left(2\right)\)
\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\left(3\right)\)
Từ (1); (2) và (3) \(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" xảy ra khi \(\begin{cases}\sqrt{\frac{b+c}{a}}=1\\\sqrt{\frac{a+c}{b}}=1\\\sqrt{\frac{a+b}{c}}=1\end{cases}\)\(\Leftrightarrow\begin{cases}\frac{b+c}{a}=1\\\frac{a+c}{b}=1\\\frac{a+b}{c}=1\end{cases}\)\(\Leftrightarrow\begin{cases}b+c=a\\a+c=b\\a+b=c\end{cases}\)
\(\Rightarrow2.\left(a+b+c\right)=a+b+c\)\(\Rightarrow a+b+c=0\), mâu thuẫn với đề bài a; b; c là các số dương
Như vậy dấu "=" không xảy ra
Do đó, \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\left(đpcm\right)\)
Sửa: \(x^2+y^2+z^2=3\)
Ta có: \(f\left(x\right)=\dfrac{x}{3-yz}\le\dfrac{2x}{6-\left(y^2+z^2\right)}=\dfrac{2x}{x^2+3}\)
\(\Rightarrow f''\left(x\right)=\dfrac{4x\left(x-3\right)\left(x+3\right)}{\left(x^2+3\right)^3}< 0\forall x\le3\) là hàm lõm
Áp dụng BĐT Jensen ta có:
\(f\left(a\right)+f\left(b\right)+f\left(c\right)\le3f\left(\dfrac{a+b+c}{3}\right)\le3f\left(1\right)=\dfrac{3}{2}\)
Lời giải:
Bài 1:
Áp dụng BĐT Cô -si ta có:
\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)
\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)
Cộng theo vế:
\(a^3+b^3+4\geq 3(a+b)\)
\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)
Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cô- si ta có:
\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)
\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)
\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)
Cộng theo vế:
\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)
\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)
Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)
Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Bài 3:
Điều kiện đề bài tương đương với:
\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)
Ta có:
\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)
\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)
\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)
Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)
Dấu bằng xảy ra khi \(a=1; b=2; c=3\)
Bài 2 dùng sos:)) Nhưng em không chắc đâu, chỗ dùng mấy cái kí hiệu tổng ý, nó rất rối, nhưng em lại lười viết ra:)
BĐT \(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}-1+\frac{\left(a+b+c\right)^2}{abc}-27\ge0\)
\(\Leftrightarrow\frac{\Sigma\frac{a+b+7c}{2}\left(a-b\right)^2}{abc}-\frac{\Sigma\frac{1}{2}\left(a-b\right)^2}{a^2+b^2+c^2}\ge0\)
\(\Leftrightarrow\Sigma\frac{1}{2}\left(a-b\right)^2\left(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}\right)\ge0\)
Ta có: \(\frac{a+b+7c}{abc}-\frac{1}{a^2+b^2+c^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+7c\right)-abc}{abc}\)
\(\ge\frac{3\sqrt[3]{\left(abc\right)^2}.3\sqrt[3]{7abc}-abc}{abc}=\frac{3\sqrt[3]{7}.abc-abc}{abc}>0\).
Từ đó ta có thể suy ra đpcm.
Nãy nhầm vị trí:v Làm lại bài 3:
Từ giả thiết suy ra \(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}\)
\(=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Tương tự hai BĐT còn lại và nhân theo vế sẽ thu được t= abc \(\ge8\) (1)
Mặt khác nhân hai vế của giả thiết với (a+1)(b+1)(c+1) thu được:
\(2\left(a+1\right)\left(b+1\right)\left(c+1\right)=\Sigma a\left(b+1\right)\left(c+1\right)\)
\(\Rightarrow a+b+c=abc-2\). Từ (1) suy ra cả hai vế đều dương.
Do đó \(\sqrt{a+b+c}=\sqrt{abc-2}\)
\(\Rightarrow\sqrt{3abc\left(a+b+c\right)}=\sqrt{3abc\left(abc-2\right)}\). Mặt khác, theo hệ quả quen thuộc của bđt AM- GM thì \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
Do đó \(ab+bc+ca\ge\sqrt{3abc\left(abc-2\right)}=\sqrt{3t\left(t-2\right)}\)
Mặt khác ta dễ dàng chứng minh được \(3t\left(t-2\right)\ge12^2\left(\text{với }t\ge8\right)\)
Như vậy ta có đpcm.
P.s: Mong là lần này không bị nhầm
Hình như bạn bị lỗi một chút. Để phải là: CM
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\sqrt{\frac{2abc}{(a+b)(b+c)(c+a)}}\geq 2\)
Giải như sau:
Đặt \(\left ( \frac{a}{b+c},\frac{b}{c+a},\frac{c}{a+b} \right )=(x,y,z)\). Khi đó, ta thu được điều kiện sau:
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1\Leftrightarrow xy+yz+xz+2xyz=1\)
Bài toán chuyển về CM \(x+y+z+\sqrt{2xyz}\geq 2\)\(\)
\(\Leftrightarrow x+y+z+\sqrt{1-(xy+yz+xz)}\geq 2\) \((\star)\)
Từ điều kiện $(1)$ , áp dụng BĐT Cauchy-Schwarz:
\(\left [ \frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1} \right ][x(x+1)+y(y+1)+z(z+1)]\geq (x+y+z)^2\)
\(\Rightarrow x(x+1)+y(y+1)+z(z+1)\geq (x+y+z)^2\)
\(\Rightarrow x+y+z\geq 2(xy+yz+xz)\) $(1)$
Ta sẽ chứng minh \(2(xy+yz+xz)+\sqrt{1-(xy+yz+xz)}\geq 2\)$(2)$
Thật vậy:
Theo Am-Gm: \(1=xy+yz+xz+2xyz\leq xy+yz+xz+2\sqrt{\frac{(xy+yz+xz)^3}{27}}\)
Đặt \(\sqrt{\frac{xy+yz+xz}{3}}=t\). Ta có
\(1\leq 3t^2+2t^3\Leftrightarrow (t+1)^2(2t-1)\geq 0\Rightarrow t\geq\frac{1}{2}\)
Khi đó \((1)\Leftrightarrow 6t^2+\sqrt{1-3t^2}\geq 2\Leftrightarrow (2t-1)(2t+1)(3t^2-1)\leq0\)
Điều này luôn đúng do \(t\geq \frac{1}{2}\) và \(1>xy+yz+xz=3t^2\)
Do đó $(1)$ được CM.
Từ \((1),(2)\Rightarrow (\star)\) đúng, bài toán được hoàn thành.
Dấu $=$ xảy ra khi $x=y=z=\frac{1}{2}$, hay $a=b=c$
\(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge2\sqrt{\frac{4ab}{c^2}}.2\sqrt{\frac{4bc}{a^2}}.2\sqrt{\frac{4ac}{b^2}}=64\)
Dấu "=" xảy ra khi \(a=b=c=2\)
\(\frac{a^3}{b}+ab\ge2a^2\) ; \(\frac{b^3}{c}+bc\ge2b^2\); \(\frac{c^3}{a}+ac\ge2c^2\)
\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\ge2\left(ab+bc+ca\right)-\left(ab+bc+ca\right)=ab+bc+ca\)
Dấu "=" xảy ra khi \(a=b=c\)
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b}\ge2\)
\(VT:\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b}\)
\(=\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{4c}{a+b}+4-6\\ =\dfrac{a+b+c}{b+c}+\dfrac{a+b+c}{c+a}+\dfrac{4a+4b+4c}{a+b}-6\\ =\left(a+b+c\right)\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{4}{a+b}\right)-6\)
Áp dụng bđt Caychuy - Schwarz :
\ \(\left(a+b+c\right)\cdot\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{4}{a+b}\right)-6\\ \ge\left(a+b+c\right)\cdot\dfrac{\left(1+1+2\right)^2}{2a+2b+2c}-6\\ \ge\dfrac{16}{2}-6=2\)
Dấu = xảy ra khi \(a=b=c\)
Cách khác:
Ta có: \(\left(a-b\right)^2+4c^2\ge0\Leftrightarrow a^2-2ab+b^2+4c^2\ge0\)
\(\Leftrightarrow a^2+b^2+4c^2+2ab+4bc+4ac-4ab-4bc-4ca\ge0\)\(\Leftrightarrow\left(a+b+2c\right)^2-4\left(ab+bc+ca\right)\ge0\)
\(\Leftrightarrow\left(a+b+2c\right)^2\ge4\left(ab+bc+ca\right)\)
Theo BĐT cauchy-schwarz ta có:
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{4c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ba}+\dfrac{4c^2}{ac+ab}\ge\)\(\ge\dfrac{\left(a+b+2c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{4\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=2\Rightarrowđpcm\)