Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bất đẳng thức cần chứng minh tương đương:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)
Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)
Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)
\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)
Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)
Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)
Cộng theo vế của 3 BĐT trên, ta được:
\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))
Đẳng thức xảy ra khi a = b = c
a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )
Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2
Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)
Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c
Suy ra VT lớn hơn hoặc bằng VP
Dấu bằng tự tìm
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Áp dụng cách đánh giá quen thuộc
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\left(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\right)^2\)
Hay \(\sqrt{3\left(a^2+b^2+c^2\right)}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
Ta cần chỉ ra được \(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, Cần chú ý đến \(a^2+b^2+c^2\). Ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
Ta cần chứng minh được
\(\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy \(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được \(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :3
1)
Ta có: \(M=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\sqrt{3\left(a+b\right)\left(a+b+4c\right)}}\ge\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{\frac{3\left(a+b\right)+\left(a+b+4c\right)}{2}}=\Sigma_{cyc}\frac{\sqrt{3}\left(a+b+4c\right)}{2\left(a+b+c\right)}=3\sqrt{3}\)
Dấu "=" xảy ra khi a=b=c
2)
\(\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}=\Sigma_{cyc}\frac{2a}{\sqrt[3]{2a\left(ab+1\right)^2}}\ge\Sigma_{cyc}\frac{2a}{\frac{2a+\left(ab+1\right)+\left(ab+1\right)}{3}}=3\Sigma_{cyc}\frac{a}{ab+a+1}\)
Ta có bổ đề: \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}=1\left(abc=1\right)\)
\(\Rightarrow\Sigma_{cyc}\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}\ge3\)
a/ Bình phương 2 vế:
\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ Bình phương:
\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)
\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)
Ta có
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a^2bc+ab^2c+abc^2}{a^2b^2c^2}=\frac{abc\left(a+b+c\right)}{a^2b^2c^2}=0\)
Ta lại có
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Từ đó
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+a^2\ge2ca.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow ab+bc+ca\le\frac{3^2}{3}=3\)
Khi đó \(c^2+3\ge c^2+ab+bc+ca=\left(b+c\right)\left(a+c\right)\Leftrightarrow\sqrt{c^2+3}\ge\sqrt{b+c}\sqrt{a+c}\)
\(a^2+3\ge a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\Leftrightarrow\sqrt{a^2+c}\ge\sqrt{\left(a+b\right)}\sqrt{a+c}\)
\(b^2+3\ge b^2+ab+bc+ca=\left(a+b\right)\left(b+c\right)\Leftrightarrow\sqrt{b^2+3}\ge\sqrt{a+b}\sqrt{b+c}\)
\(\Rightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{ab}{\sqrt{b+c}\sqrt{a+c}}+\frac{bc}{\sqrt{a+b}\sqrt{a+c}}+\frac{ca}{\sqrt{a+b}\sqrt{b+c}}\)*
áp dụng bđt Cauchy ngược dấu
\(\sqrt{\frac{1}{a+b}}.\sqrt{\frac{1}{a+c}}\le\frac{\frac{1}{a+b}+\frac{1}{a+c}}{2}\Leftrightarrow\frac{2}{\sqrt{a+b}\sqrt{a+c}}\le\frac{1}{a+b}+\frac{1}{a+c}\)
\(\Leftrightarrow\frac{2bc}{\sqrt{a+b}\sqrt{a+c}}\le\frac{bc}{a+b}+\frac{bc}{a+c}\)
Chứng minh tương tự \(\frac{2ab}{\sqrt{a+c}\sqrt{b+c}}\le\frac{ab}{a+c}+\frac{ab}{b+c}\)
\(\frac{2ca}{\sqrt{b+c}\sqrt{a+b}}\le\frac{ca}{b+c}+\frac{ca}{a+b}\)
Kết hợp với * ta có
\(\frac{2ab}{\sqrt{c^2+3}}+\frac{2bc}{\sqrt{a^2+3}}+\frac{2ca}{\sqrt{b^2+3}}\le\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+c}+\frac{bc}{a+b}+\frac{ca}{a+b}+\frac{ca}{b+c}\)
\(\Leftrightarrow2\left(\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\right)=\frac{bc+ca}{a+b}+\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}=a+b+c\)
\(\Leftrightarrow\frac{ab}{\sqrt{c^2+3}}+\frac{bc}{\sqrt{a^2+3}}+\frac{ca}{\sqrt{b^2+3}}\le\frac{a+b+c}{2}=\frac{3}{2}.\)
nhầm xíu dòng thứ 2 từ dưới lên
\(2\left(...\right)\ge\frac{ab}{..}...\)=...
Áp dụng bđt AM-GM:
\(\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
Tương tự và cộng theo vế:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Dấu "=" không xảy ra => đpcm