Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
đkxđ: \(abc\ne0\)
\(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow\left(a+b+c\right)^2=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\)
Kết hợp với \(a^2+b^2+c^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) và đẳng thức \(\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)=2\left(xy+yz+zx\right)\), dễ dàng suy ra \(ab+bc+ca=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\) \(\Leftrightarrow ab+bc+ca=\dfrac{a+b+c}{abc}\) \(\Leftrightarrow a+b+c=abc\left(ab+bc+ca\right)\) (1)
Mặt khác, \(a+b+c=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}\) \(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\) (2)
Từ (1) và (2), suy ra \(a+b+c=\left(abc\right)^2\left(a+b+c\right)\) \(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\abc=\pm1\end{matrix}\right.\)
TH1: \(a+b+c=0\), suy ra \(\dfrac{ab+bc+ca}{abc}=0\) hay \(ab+bc+ca=0\), từ đó suy ra \(a^2+b^2+c^2=0\) \(\Leftrightarrow a=b=c=0\), loại
TH2: \(abc=1\). Ta dễ dàng suy ra được \(a+b+c=ab+bc+ca\). Ta có \(\left(a-1\right)\left(b-1\right)\left(c-1\right)\) \(=abc-\left(ab+bc+ca\right)+\left(a+b+c\right)-1\) \(=0\) nên suy ra \(\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\). Giả sử \(a=1\). Khi đó ta có \(bc=1\)
Thay lại vào 2 pt đã cho, ta đều thấy thỏa mãn. Vậy ta tìm được 1 tập nghiệm của hệ là \(S_1=\left\{\left(a;b;c\right)|a=1;bc=1\right\}\) và các hoán vị của mỗi nghiệm thuộc tập S1.
TH3: \(abc=-1\). Ta kiểm chứng được \(a+b+c+ab+bc+ca=0\). Ta có \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=abc+ab+bc+ca+a+b+c+1=0\) nên \(\left[{}\begin{matrix}a=-1\\b=-1\\c=-1\end{matrix}\right.\). Nếu \(a=-1\) thì suy ra \(bc=1\). Thử lại vào cả 2 pt ta đều thấy thỏa mãn. Như vậy ta tìm được tập nghiệm nữa của hpt đã cho là \(S_2=\left\{\left(a;b;c\right)|a=-1;bc=1\right\}\) và các hoán vị của mỗi bộ nghiệm trong các nghiệm thuộc \(S_2\).
Vậy tập nghiệm của hpt đã cho là \(S=S_1\cup S_2=\left\{\left(a;b;c\right)|a=\pm1;bc=1\right\}\) và các hoán vị của mỗi phần tử thuộc S.
Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )
\(\Leftrightarrow a=c\)
Làm tương tự ; ta có : a = b . Suy ra : a = b = c
\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)
Vậy ...
Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0
⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )
⇔a=c⇔a=c
Làm tương tự ; ta có : a = b . Suy ra : a = b = c
A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6
Vậy ...
Bài này đã có ở đây:
Cho abc=1CMR\(\dfrac{a+3}{\left(a+1\right)^2}+\dfrac{b+3}{\left(b+1\right)^2}+\dfrac{c+3}{\left(c+1\right)^2}\ge3\) - Hoc24
Ta có : \(a^2+b^2\ge2ab\Rightarrow a^2+b^2-ab\ge ab\)
\(\Rightarrow\dfrac{1}{a^2-ab+b^2}\le\dfrac{1}{ab}=\dfrac{abc}{ab}=c\) ( do $abc=1$ )
Tương tự ta có :
\(\dfrac{1}{b^2-bc+c^2}\le a\)
\(\dfrac{1}{c^2-ab+a^2}\le b\)
Cộng vế với vế các BĐT trên có :
\(\dfrac{1}{a^2-ab+b^2}+\dfrac{1}{b^2-bc+c^2}+\dfrac{1}{c^2-ac+a^2}\le a+b+c\)
Dấu "=" xảy ra khi $a=b=c$
\(VT=\dfrac{1}{a^2+b^2-ab}+\dfrac{1}{b^2+c^2-bc}+\dfrac{1}{c^2+a^2-ca}\)
\(VT\le\dfrac{1}{2ab-ab}+\dfrac{1}{2bc-bc}+\dfrac{1}{2ca-ca}=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{a+b+c}{abc}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1
Không mất tính tổng quát, giả sử đó là a và b
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)
\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)
Lại có:
\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)
\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)
\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(a^2+b^2+1)(1+1+c^2)\geq (a+b+c)^2$
$\Rightarrow \frac{1}{a^2+b^2+1}\leq \frac{c^2+2}{(a+b+c)^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế:
$\text{VT}\leq \frac{a^2+b^2+c^2+6}{(a+b+c)^2}=\frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2(ab+bc+ac)}\leq \frac{a^2+b^2+c^2+6}{a^2+b^2+c^2+2.3}=1$
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
Ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)
\(\Leftrightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\dfrac{1}{a}.\dfrac{1}{b}+2.\dfrac{1}{b}.\dfrac{1}{c}+2.\dfrac{1}{a}.\dfrac{1}{c}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2c}{abc}+\dfrac{2a}{abc}+\dfrac{2b}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2\left(a+b+c\right)}{abc}=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+\dfrac{2abc}{abc}=4\left(a+b+c=abc\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2=4\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
Vậy \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\)
:D