K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
cho 3 số a,b,c khác 0 thỏa mãn ab/a+b=bc/b+c=ca/c+a
tính giá trị của biểu thức M=ab+bc+ca/a^2+b^2+c^2
0
28 tháng 8 2021
\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ca}{c^2+a^2-b^2}=\dfrac{ab}{\left(a+b\right)^2-2ab-c^2}+\dfrac{bc}{\left(b+c\right)^2-2bc-a^2}+\dfrac{ca}{\left(a+c\right)^2-2ac-b^2}=\dfrac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\dfrac{bc}{\left(a+b+c\right)\left(b+c-a\right)-2bc}+\dfrac{ac}{\left(a+b+c\right)\left(a+c-b\right)-2ac}=\dfrac{ab}{-2ab}+\dfrac{bc}{-2bc}+\dfrac{ca}{-2ca}=-\dfrac{1}{2}.3=-\dfrac{3}{2}\)
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)
\(\Rightarrow ac+bc=ab+ac=bc+ab\)
Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\) (1)
\(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\) (2)
Từ (1) và (2) \(\Rightarrow a=b=c\)
Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)