K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2017

Ta có : a102 + b102 = (a101 + b101)(a + b) - ab(a100 + b100)

Mà a100 + b100 = a101 + b101 = a102 + b102

Do đó : a + b - ab = 1

=> a + b - ab - 1 = 0

<=> (a - ab) + (b - 1) = 0

<=> a(1 - b) - (1 - b) = 0

=> (a - 1)(1 - b) = 0

\(\Leftrightarrow\orbr{\begin{cases}a-1=0\\1-b=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}}\)

Nên a = 1 thì b = 1 

Vậy  P = a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2

8 tháng 9 2017

I have a crazy idea tham khảo nhé:

Vì: a100 + b100; a101 + b101; a102 + b102 đều = nhau nên a chỉ = 1 => a2004 + b2004 = 12004 + 12004 = 1 + 1 = 2

Vậy:

dòng thứ 2 bạn phải đóng ngoặc chứ

sửa lại:

=a1000+b100+a10+b-(b1000+a100+b10+a)

5 tháng 11 2019

Cảm ơn bạn nhé vậy là mình làm sai rùi.

21 tháng 1 2018

a.

Theo đề bài ta có:

-1 - 1 - ... - 1 + a101 = 0

=> - 50 + a101 = 0=> a101 = 50

b,

-2017 < |a+4| ≤ 2

=> 0 ≤ |a+4| ≤ 2

=> -2 ≤ a+4 ≤ 2

=> -6 ≤ a ≤ -2

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:
Nếu $a,b,c$ đều là số nguyên tố lẻ thì $a^2+b^2+c^2$ lẻ. Mà $558$ chẵn nên vô lý

Do đó trong 3 số trên tồn tại 1 số nguyên tố chẵn. Giả sử đó là $a$

$a$ nguyên tố chẵn nên $a=2$

$b^2+c^2=558-a^2=558-2^2=554$

$b^2=554-c^2< 554-3^2=545$

$\Rightarrow b< 23,3$. Vì $b$ nguyên tố nên $b=\left\{3; 5;7;11; 13; 17; 19; 23\right\}$

Thử thì ta thấy $(b,c)=(5,23), (23, 5)$

Vậy $E=a+b+c=2+23+5=30$

20 tháng 2 2020

Bài 2:

a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3

b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3

\(\frac{n+4}{n-3}\)\(\frac{n-3+7}{n-3}\)\(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3

=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}

=> n\(\in\){ 4; 10; 2; -4}

Vậy...

c) Bn thay vào r tính ra

20 tháng 2 2020

la 120

5 tháng 3 2017

3n+4 chia hết cho n+1

3.(n+1) chai hết cho n+1

3n+3 chia hết cho n+1

3n+4-(3n+3) chia hết cho n+1

1 chia hết cho n+1

n+1 thuộc Ư(1)

n+1 thuộc (1;-1)

n thuộc ( 0;-2)

vậy n thuộc ( 0;-2)