Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỷ lệ thức này sai nhé!
Đúng thì phải theo kết quả của lời giải này nhé!
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k\Rightarrow k^{2010}=\frac{a_1.a_2...a_{2010}}{a_2.a_3...a_{2011}}=\frac{a_1}{a_{2011}}\)
Mà \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2010}}{a_{2011}}=k=\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\)
Vậy \(\frac{a_1}{a_{2011}}=\left(\frac{a_1+a_2+...+a_{2010}}{a_2+a_3+...+a_{2011}}\right)^{2010}=k^{2010}\)
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_{2013}}{a_{2014}}=\dfrac{a_{2014}}{a_1}=\dfrac{a_1+a_2+...+a_{2014}}{a_1+a_2+...+a_{2014}}=1\\ \Leftrightarrow a_1=a_2=...=a_{2014}\\ \Leftrightarrow Q=\dfrac{\left(2014a_1\right)^2}{a_1^2\left(1+2+...+2014\right)}=\dfrac{2014^2\cdot a_1^2}{a_1^2\cdot\dfrac{2015\cdot2014}{2}}=\dfrac{2\cdot2014^2}{2015\cdot2014}=\dfrac{2\cdot2014}{2015}=...\)
Ta có: \(a_2^2=a_1.a_3\)\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}\) ; \(a_3^2=a_2.a_4\)\(\Rightarrow\frac{a_2}{a_3}=\frac{a_3}{a_4}\)
\(\Rightarrow\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}\)\(\Rightarrow\frac{a_1^3}{a_2^3}=\frac{a_2^3}{a_3^3}=\frac{a_3^3}{a_4^3}=\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\)(1)
Lại có: \(\frac{a_1^3}{a_2^3}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}=\frac{a_1}{a_4}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\frac{a_1}{a_4}\)
1 + 1=
Ai có nhu cầu tình dục cao thì liên hẹ vs e nha, e làm cho, 20k thôi, e cần tiền chữa bệnh cho mẹ
1+1= 2 nha
Em lo học đi, ở đó đừng nói bậy. Nếu em khó khăn thì báo cho nhà trường để giúp nghe
cách làm như thế này có đúng không nhỉ ? nếu đúng thì tích cho mik nhé !
a2^2= a1.a3 (c )
a3^2=a2.a4 (d)
từ (c) và (d) suy ra : a1/a2=a2/a3=a3/a4
=> (a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1/a2.a2/a3.a3/a4= a1/a4
mặt khác :(a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1^3/a2^3= a2^3/a3^3=a3^3/a4^3
= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3
từ đó suy ra : a1/a4= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3
Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=t\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_{2008}}{a_{2009}}=\dfrac{a_1+a_2+a_3+...+a_{2008}}{a_2+a_3+...+a_{2009}}=t\)
Ta có: \(\left\{{}\begin{matrix}\left(\dfrac{a_1+a_2+...+a_{2008}}{a_2+a_3+...+a_{2009}}\right)^{2008}=t^{2008}\\\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}...\dfrac{a_{2008}}{a_{2009}}=t^{2008}=\dfrac{a_1}{a_{2009}}\end{matrix}\right.\Leftrightarrow\left(đpcm\right)\)