K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{a^2+c^2}{b^2+d^2}=\frac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\frac{b^2.k^2+d^2.k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

5 tháng 11 2016

mk cũng định làm thế nhưng ko rảnh

Đào Nguyễn Thùy Dương à

21 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)

21 tháng 2 2019

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

 \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)

Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)

\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)

Rút gọn 2 vế ta đc 0=0 

vì 0=0 luôn đúng nên cái phương trình trên luôn đúng

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)

Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

26 tháng 3 2019

Có:a2/b2=c2/d2=ac/bd=>a2+ac/b2+bd=c2-ac/b2-bd=>a2+ac/c2-ac=b2+bd/d2-bd
 

1 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

\(\RightarrowĐPCM\)

1 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\)\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)

\(\Rightarrow\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)             ( đpcm )

10 tháng 10 2021

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

10 tháng 10 2021

trả lời :

Ta có \(\hept{\begin{cases}b^2=ac\\c^2=bd\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{c}\\\frac{b}{c}=\frac{c}{d}\end{cases}}\Leftrightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Leftrightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Áp dụng dãy tỉ số bằng nhau ta có : 

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

<=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(đpcm) 

^HT^

Ta có b²=ac=>a/b=b/c

           c²=bd=>b/c=c/d

=>a/b=b/c=c/d

=>a³/b³=b³/c³=c³/d³

=>a³/b³=b³/c³=c³/d³=(a³+b³+c³)/(b³+c³+d³)=>a/b=b/c=c/d=(a³+b³+c³)/(b³+c³+d³)

Mà b/c=c/d=>d/c=c/b

=>a/b=d/c

=>a/d=b/c=(a³+b³+c³)/(b³+c³+d³)

=đpcm

3 tháng 3 2019

TA  có : b^2=ac suy ra: a/b=b/c(1)

C^2=bd suy ra: b/c =c/d(2)

Từ(1),(2)ta đc: a/b=b/c=c/d

Áp dụng t/c dãy tỉ số bằng nhau ta đc

a/b=b/c=c/d=a^3/b^3=b^3/c^3=c^3/d^3=a^3+

b^3+c^3/b^3+c^3+d^3

Từ đó a/b= a^3+b^3+c^3/b^3+c^3+d^3

Tương tự b/c và c/d

Suy ra abc/bcd=a^3+b^3+c^3/b^3+c^3+d^3

=» a/d=a^3+b^3+c^3/b^3+c^3+d^3( ĐPCM)

6 tháng 6 2015

ta có: a/b = c/d = (a + c)/ (b + d) = (c - a)/ (d - b)

điều cần chứng minh là:   

(a2  + ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)     => (a2 + ac) / (b2 + bd)  = (c2 - ac) / (d2 - bd) 

                                                               = a (a + c) /  b (b + d)   = c (c - a)  / d (d - b)

mà theo chứng minh trên ta có:

a/b = c/d ; (a + c)/ (b + d) = (c - a)/ (d - b)

từ đó ta  =>   (a+ ac) / (c2 - ac) = (b2 + bd) / (d2 - bd)         (đpcm)