Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: y1+y2=-(x1+x2)=-5
y1*y2=(-x1)(-x2)=x1x2=6
Phương trình cần tìm có dạng là;
x^2+5x+6=0
b: y1+y2=1/x1+1/x2=(x1+x2)/x1x2=5/6
y1*y2=1/x1*1/x2=1/x1x2=1/6
Phương trình cần tìm là:
a^2-5/6a+1/6=0
Δ=(2n+2)^2-4(n^2+2)
=4n^2+8n+4-4n^2-8
=8n-4
Để phương trình có hai nghiệm phân biệt thì 8n-4>0
=>n>1/2
x1^3+x2^3=1
=>(x1+x2)^3-3x1x2(x1+x2)=1
=>(2n+2)^3-3(n^2+2)(2n+2)=1
=>8n^3+24n^2+24n+8-3(2n^3+2n^2+4n+4)=1
=>8n^3+24n^2+24n+8-6n^3-6n^2-12n-12-1=0
=>2n^3+18n^2+12n-5=0
=>\(n\in\varnothing\)
- Gọi \(x_1\) là một nghiệm của phương trình (1). Khi đó ta có:
\(x_1^2-2mx_1+4m=0\left(1'\right)\).
Vì phương trình (2) có một nghiệm bằng 2 lần nghiệm của phương trình (1) nên \(2x_1\) là một nghiệm của phương trình (2). Do đó:
\(\left(2x_1\right)^2-m.\left(2x_1\right)+10m=0\)
\(\Rightarrow4x_1^2-2mx_1+10m=0\left(2'\right)\)
Thực hiện phép tính \(4.\left(1'\right)-\left(2'\right)\) vế theo vế ta được:
\(4x_1^2-8mx_1+16m-\left(4x_1^2-2mx_1+10m\right)=0\)
\(\Rightarrow-6mx_1+6m=0\)
\(\Rightarrow6m\left(-x_1+1\right)=0\Rightarrow\left[{}\begin{matrix}m=0\\x_1=1\end{matrix}\right.\)
*Với \(x_1=1\). Vì \(x_1=1\) là 1 nghiệm của phương trình (1) nên:
\(1^2-2m.1+4m=0\Leftrightarrow m=-\dfrac{1}{2}\)
Thử lại ta có \(m=0\) hay \(m=-\dfrac{1}{2}\).
Lời giải:
Để pt $(1)$ và $(2)$ có nghiệm thì \(\left\{\begin{matrix} \Delta(1)=25-4k\geq 0\\ \Delta(2)=49-8k\geq 0\end{matrix}\right.\Leftrightarrow k\leq \frac{49}{8}\)
Gọi $t$ là nghiệm $(1)$ thì yêu cầu đề bài được xử lý khi $2t$ là nghiệm của $(2)$
\(\Leftrightarrow \left\{\begin{matrix} t^2-5t+k=0\\ (2t)^2-14t+2k=0\end{matrix}\right.\)
\(\Rightarrow 2(t^2-5t)-4t^2+14t=0\)
$\Leftrightarrow t=0$ hoặc $t=2$.
Nếu $t=0$ thì hiển nhiên loại
Nếu $t=2$ thì $k=6$.
Thử lại thấy thỏa mãn.