Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
1)
a) Biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa khi \(x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{0;-8\right\}\) thì biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa
b) Biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa khi \(16x^2-25=0\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=5\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\) thì biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa
c) Biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa khi \(2x^2-28x+98=0\)
\(\Leftrightarrow2\left(x^2-14x+49\right)=0\)
\(\Leftrightarrow\left(x-7\right)^2=0\)
\(\Leftrightarrow x-7=0\)
hay x=7
Vậy: Khi x=7 thì biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa
d) Để biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa thì \(9-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3-x-3\right)\left(3+x+3\right)=0\)
\(\Leftrightarrow-x\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{0;-6\right\}\) thì biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa
2)
a) ĐKXĐ: \(x\notin\left\{0;-8\right\}\)
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\)
c) ĐKXĐ: \(x\ne7\)
d) ĐKXĐ: \(x\notin\left\{0;-6\right\}\)
3)
a) Để phân thức \(\dfrac{x-2}{x^2+8x}=0\) thì x-2=0
hay x=2(nhận)
Vậy: Khi x=2 thì phân thức \(\dfrac{x-2}{x^2+8x}=0\)
b) Để phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\) thì \(25x^2-1=0\)
\(\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\5x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\left(nhận\right)\\x=-\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\) thì phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\)
c) Để phân thức \(\dfrac{x^2+1}{2x^2-28x+98}=0\) thì \(x^2+1=0\)
mà \(x^2+1>0\forall x\) thỏa mãn ĐKXĐ
nên \(x\in\varnothing\)
Vậy: Không có giá trị nào của x để \(\dfrac{x^2+1}{2x^2-28x+98}=0\)
d) Để phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\) thì 2x+3=0
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)(nhận)
Vậy: Khi \(x=-\dfrac{3}{2}\) thì phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\)
mình chỉ làm 1 câu thôi nhé các câu khác làm tương tự
1. biểu thức vô nghĩa <=> mẫu thức = 0
\(x^2+8x=0< =>\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
vậy ...
2. tập xác định là tập hợp các giá trị làm phân thức có nghĩa (trong căn thì ≥ 0 ; dưới mẫu thì ≠ 0)
\(x^2+8x\ne0< =>\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\)
vậy ...
3. để phân thức = 0 => tử bằng không và mẫu khác không
\(\left\{{}\begin{matrix}x-2=0\\x^2+8x\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\left(tm\right)\\\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\end{matrix}\right.\)
\(M+\frac{2x^2}{\left(3-x\right)\left(x+1\right)}=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{4x}{\left(3-x\right)\left(x+1\right)}-\frac{2x^2}{\left(3-x\right)\left(x+1\right)}\)
\(M=\frac{2x\left(3-x\right)}{\left(3-x\right)\left(x-1\right)\text{}\left(x+1\right)}+\frac{4x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}+\frac{2x^2\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{6x-2x^2+4x^2-4x+2x^3-2x^2}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x^3-2x}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x\left(x-1\right)}{\left(3-x\right)\left(x-1\right)\left(x+1\right)}\)
\(M=\frac{2x}{\left(3-x\right)\left(x+1\right)}\)
có gì sai sót bạn bỏ qua
Học tốt
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )