Cho các phân thức 1 (a −...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2018

12x2x2y la gi vay

9 tháng 11 2018

ghi rõ ra trả lời cho

2 tháng 9 2019

a)Ta có :

(a+b+c)2 - (ab+bc+ca) =0 <=> a2+b2+c2+ab+bc+ca =0

<=>2a2+2b2+2c2+2ab+2bc+2ca=0

<=>(a+b)2+(b+c)2+(c+a)2=0

<=>a+b =b+c =c+a =0

<=>a=b=c=0

Vậy điều kiện để phân thức M được xác định là a;b;c không đồng thời bằng 0.

b)Ta có hằng thức: (a+b+c)2=a2+b2+c2+2(ab+bc+ca)

Ta đặt a2+b2+c2=x ; ab+bc+ca=y.Khi đó (a+b+c)2= x+2y

Ta có: 

\(M=\frac{x\left(x+2y\right)+y^2}{x+2y-y}=\frac{x^2+2xy+y^2}{x+y}=\frac{\left(x+y\right)^2}{x+y}=x+y\)

= a2+b2+c2+ab+bc+ca.

=a2+b2+c2+ab+bc+ca

Gt thêm nhe

27 tháng 10 2018

\(a+b+c=9\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^2=81\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+2ab+2bc+2ca=81\)

\(\Leftrightarrow\)\(2\left(ab+bc+ca\right)=54\)

\(\Leftrightarrow\)\(ab+bc+ca=27\)

\(\Rightarrow\)\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)

\(\Rightarrow\)\(B=\left(a-4\right)^{2018}+\left(b-4\right)^{2019}+\left(c-4\right)^{2020}=4^{2018}-4^{2019}+4^{2020}\)

\(\Rightarrow\)\(B=13.4^{2018}\)

Vậy \(B=13.4^{2018}\)

Chúc bạn học tốt ~ 

27 tháng 10 2018

Phùng Minh Quân : sửa dòng thứ 4 từ dưới lên

Mà \(a+b+c=9\)

\(\Rightarrow a=b=c=3\)

\(B=\left(a-4\right)^{2018}+\left(b-4\right)^{2019}+\left(c-4\right)^{2020}\)

\(B=\left(3-4\right)^{2018}+\left(3-4\right)^{2019}+\left(3-4\right)^{2020}\)

\(B=\left(-1\right)^{2018}+\left(-1\right)^{2019}+\left(-1\right)^{2020}\)

\(B=1-1+1\)

\(B=1\)

6 tháng 5 2016

Sai rồi bạn ạ

BĐT Cauchy có dạng:

\(\frac{a+b}{2}\ge\sqrt{ab}\)

Đây là BĐT AM-GM hay BĐT Cauchy tổng quát:

\(\frac{a_1+a_2+...+a_n}{n}\ge\sqrt[n]{a_1a_2...a_n}\)

Với 3 số thì BĐT thế này:

\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)

Câu 1:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\) => ab + bc + ca = abc

=> (ab + bc + ca)(a+b+c) = abc (do a+b+c = 1)

=> \(a^2b+ac^2+a^2c+b^2c+ab^2+bc^2+2abc=0\)

=> ab(a+c) + ac(a+c) + \(b^2\left(a+c\right)\) + bc(c+a) = 0

=> (a+b)(b+c)(c+a) = 0

1 tháng 5 2020

mà bạn ơi , bạn xin phép CTV chưa

Lương Lâm

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

21 tháng 11 2019

Công thức đúng nhé bạn

21 tháng 11 2019

✞๖ۣۜ ☾ ɪ’ʟʟ ɓє ƴσυʀ ɓєѕтƒʀɪєη∂,⁀ᶜᵘᵗᵉ(♥)ღ༻ bạn phân tích đúng rồi nha !

28 tháng 6 2017

Tính chất cơ bản của phân thức