\(_1\)), y=2x(d\(_2\)), y=-x+3(
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

a, Bạn tự vẽ

b, PT hoành độ giao điểm (d1) và (d3) là 

\(x=-x+3\Leftrightarrow x=\dfrac{3}{2}\Leftrightarrow y=\dfrac{3}{2}\Leftrightarrow A\left(\dfrac{3}{2};\dfrac{3}{2}\right)\Leftrightarrow OA=\sqrt{\left(\dfrac{3}{2}-0\right)^2+\left(\dfrac{3}{2}-0\right)^2}=\dfrac{3\sqrt{2}}{2}\)

PT hoành độ giao điểm (d2) và (d3) là 

\(2x=-x+3\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\Leftrightarrow OB=\sqrt{\left(1-0\right)^2+\left(2-0\right)^2}=\sqrt{5}\)

Ta có \(AB=\sqrt{\left(\dfrac{3}{2}-1\right)^2+\left(\dfrac{3}{2}-2\right)^2}=\sqrt{\dfrac{1}{4}+\dfrac{1}{4}}=\dfrac{\sqrt{2}}{2}\)

Ta có \(OA^2+AB^2=\dfrac{9}{2}+\dfrac{1}{2}=\dfrac{10}{2}=5=OB^2\) nên tg OAB vuông tại A

Do đó \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot AB=\dfrac{1}{2}\cdot\dfrac{3\sqrt{2}}{2}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{3}{4}\left(đvdt\right)\)

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Đồ thị:

Hệ số góc của đường thẳng y = ax + b ( a khác 0)

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

Tìm tọa độ điểm $A$

PT hoành độ giao điểm $(d_1)$ và $(d_3)$:

\(x-(-x+3)=0\Leftrightarrow x=\frac{3}{2}\)

Với \(x=\frac{3}{2}\rightarrow y=\frac{3}{2}\). Vậy \(A(\frac{3}{2}; \frac{3}{2})\)

Tìm tọa độ điểm $B$:

PT hoành độ giao điểm $(d_2)$ và $(d_3)$:

\(2x-(-x+3)=0\Leftrightarrow x=1\)

Với \(x=1\rightarrow y=2x=2\). Vậy \(B(1,2)\)

\(\Rightarrow AB=\sqrt{(\frac{3}{2}-1)^2+(\frac{3}{2}-2)^2}=\frac{\sqrt{2}}{2}\)

Gọi giao điểm của $(d_3)$ với $Ox,Oy$ là $M,N$

Dễ thấy $M( 3;0); N(0; 3)$

\(\Rightarrow OM=ON=3\)

Theo hệ thức lượng trong tam giác vuông. Gọi $k$ là khoảng cách từ $O$ đến đường thẳng $AB$

\(\Rightarrow \frac{1}{k^2}=\frac{1}{OM^2}+\frac{1}{ON^2}=\frac{2}{9}\Rightarrow k=\frac{3\sqrt{2}}{2}\)

Vậy: \(S_{OAB}=\frac{k.AB}{2}=\frac{\frac{3\sqrt{2}}{2}.\frac{\sqrt{2}}{2}}{2}=\frac{3}{4}\) (đơn vị diện tích)

12 tháng 10 2017

1) Tìm được \(A\left(0:3\right);B\left(0:7\right)\)

\(\Rightarrow I\left(0;5\right)\)

2) Hoành độ giao điểm J của \(\left(d_1\right)\)\(\left(d_2\right)\)là nghiệm của \(PT:x+3=3x+7\)

\(\Rightarrow x=-2\Rightarrow y_J=1\Rightarrow J\left(-2;1\right)\)

\(\Rightarrow OI^2=0^2+5^2=25\)

\(\Rightarrow OJ^2=2^2+1^2=5\)

\(\Rightarrow IJ^2=2^2+4^2=20\)

\(\Rightarrow OJ^2+IJ^2=OI^2\Rightarrow\Delta OIJ\)LÀ TAM GIÁC VUÔNG TẠI J

\(\Rightarrow S_{\Delta OIJ}=\frac{1}{2}OI.OJ=\frac{1}{2}.\sqrt{5}.\sqrt{20}=5\left(đvdt\right)\)

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

NV
21 tháng 6 2019

\(2x^2-mx-2m=0\)

a/ \(\Delta=m^2+16m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-16\end{matrix}\right.\)

b/ Gọi \(d_1:\) \(y=4x+b\)

\(A\left(a;a+7\right)\Rightarrow a+7=2a+4\Rightarrow a=3\Rightarrow A\left(3;10\right)\)

\(\Rightarrow10=4.3+b\Rightarrow b=-2\Rightarrow d_1:\) \(y=4x-2\)

\(\left\{{}\begin{matrix}y=mx+2m\\y=4x-2\end{matrix}\right.\)

- Nếu \(\Rightarrow\left(m-4\right)x+2m+2=0\Rightarrow x=\frac{-2m-2}{m-4}\Rightarrow y=\frac{-10m}{m-4}\)

Tự thay 2 giá trị m ở câu a vào để tính ra tọa độ cụ thể

c/ Với\(k\ne2l\ne4\Rightarrow\left\{{}\begin{matrix}k\ne4\\l\ne2\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=kx+2k+1\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-2k-3}{k-4}\\y=\frac{-10k-4}{k-4}\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=2lx+l-2\\y=4x-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{-l}{2l-4}\\y=\frac{-4l+4}{l-2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{-2k-3}{k-4}=\frac{-l}{2l-4}\\\frac{-10k-4}{k-4}=\frac{-4l+4}{l-2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k=...\\l=...\end{matrix}\right.\)

10 tháng 5 2019

Hỏi đáp Toán

2 tháng 10 2021

a) Vẽ tương đối (d1), (d2)    

O y x 6 -4 d1 -1 -3 d2

b) Phương trình hoành độ giao điểm của (d1) và (d2):

\(\frac{3}{2}\)\(x+6\)\(=\) \(-3x-3\)

\(\Leftrightarrow\)\(\frac{9}{2}\)\(x=\)\(-9\)

\(\Leftrightarrow\)\(x=\)\(-2\)

\(\Rightarrow\)\(y=3\)

Vậy giao điểm của (d1) và (d2) là \(\left(-2;3\right)\)

c) Gọi phương trình đường thẳng cần tìm là (d): y = ax + b 

(d) // (d1) => (d):\(\frac{3}{2}\) \(x+b\)

A \(\in\)(d2) => A \((\)\(\frac{-4}{3}\)\(;1\)\()\)

Thay tọa độ A vào đường thẳng (d) ta có :

1 = \(\frac{3}{2}\) .\(\frac{-4}{3}\)+ b

\(\Leftrightarrow\)b = 3

Vậy (d): y =\(\frac{3}{2}\) \(x+3\)

:3