\(\ne\)0

                                 ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

a) (d) cắt (d') khi và chỉ khi 2m+1 \(\ne\) m-1 suy ra m \(\ne\) -2 .Vậy m \(\ne\) -2 thì (d) cắt (d').

b) (d) song song với (d') khi và chỉ khi 2m+1=m-1 và -(2m+3) \(\ne\) m suy ra m=-2 và m \(\ne\) -1.Vậy m=-2 thì (d) song song với (d').

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

20 tháng 11 2022

ĐKXĐ: m<>1, m<>0

a: Để hai đường song song thì \(-\dfrac{2m}{m-1}=\sqrt{3}\)

=>\(-2m=\sqrt{3}m-\sqrt{3}\)

\(\Leftrightarrow m\left(-2-\sqrt{3}\right)=-\sqrt{3}\)

hay \(m=-3+2\sqrt{3}\)

tana=căn 3

nên a=60 độ

b: 

\(y=-\dfrac{2m}{m-1}x+\dfrac{2}{m-1}\)

=>\(\dfrac{2m}{m-1}x+y-\dfrac{2}{m-1}=0\)

\(h=d\left(O;d\right)=\dfrac{\left|-\dfrac{2m}{m-1}\cdot0+y\cdot0-\dfrac{2}{m-1}\right|}{\sqrt{\left(\dfrac{2m}{m-1}\right)^2+1^2}}\)

\(=\dfrac{2}{\left|m-1\right|}:\sqrt{\dfrac{4m^2+m^2-2m+1}{\left(m-1\right)^2}}\)

\(=\dfrac{2}{\sqrt{5m^2-2m+1}}\)

Để h lớn nhất thì \(\sqrt{5m^2-2m+1}\) nhỏ nhất

\(5m^2-2m+1=5\left(m^2-\dfrac{2}{5}m+\dfrac{1}{5}\right)\)

\(=5\left(m^2-2\cdot m\cdot\dfrac{1}{5}+\dfrac{1}{25}+\dfrac{4}{25}\right)\)

\(=5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}>=\dfrac{4}{5}\)

=>\(\sqrt{5\left(m-\dfrac{1}{5}\right)^2+\dfrac{4}{5}}>=\dfrac{2}{\sqrt{5}}\)

Dấu = xảy ra khi m=1/5

a: Để hai đường song song thì 3m^2+1=4m và m^2-9<>-m-5

=>(m-1)(3m-1)=0 và m^2+m-4<>0

=>m=1 hoặc m=1/3

b: Để hai đường cắt nhau thì 3m^2+1<>4m

=>m<>1 và m<>1/3

Khi m=2 thì (d1): \(y=8x-7\)

(d2): y=13x-5

Toa độ giao điểm là:

8x-7=13x-5 và y=8x-7

=>-5x=-5+7=2 và y=8x-7

=>x=-2/5 và y=-16/5-7=-16/5-35/5=-51/5

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai: a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1. b, Hàm số đồng biến khi m < 1. c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1. d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2). Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng A. Đồ thị hàm số luôn đi qua điểm A ( 0;1) B. Điểm M ( 0;...
Đọc tiếp

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai:

a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1.

b, Hàm số đồng biến khi m < 1.

c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1.

d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2).

Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng

A. Đồ thị hàm số luôn đi qua điểm A ( 0;1)

B. Điểm M ( 0; -1) luôn thuộc đồ thị hàm số.

C. Đồ thị hàm số luôn song song với đường thẳng y = 1 - x

D. Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ bằng 1

Câu 3: Cho hàm số y = ( m + 1)x + m - 1. Kết luận nào sau đây là đúng?

A. Với m > 1, hàm số y là hàm số đồng biến

B. Với m > 1, hàm số y là hàm số nghịch biến

C. Với m = 0, đồ thị hàm số đi qua gốc tọa độ.

D. Với m = 2, đồ thị hàm số đi qua điểm có tọa độ ( \(-\frac{1}{2}\);1)

Câu 4: Hai đường thẳng y = ( 2 - \(\frac{m}{2}\))x + 1 và y = \(\frac{m}{2}\)x + 1 ( m là tham số) cùng đồng biến khi:

A. -2 < m < 0

B. m > 4

C. ) < m < 4

D. -4 < m < -2

Câu 5: Cho ba đường thẳng ( d1): y = x - 1; (d2): y= 2 - \(\frac{1}{2}\)x; ( d3): y = 5 + x. So với đường thẳng nằm nganng thì:

A. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d2

B. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d3

C. Độ dốc của đường thẳng d3 lớn hơn độ dốc của đường thẳng d2

D. Độ dốc của đường thẳng d1 và d3 như nhau

1
8 tháng 11 2019

Minh An, Nguyễn Ngọc Linh, tth, Phạm Lan Hương, Vũ Minh Tuấn, Lê Nguyễn Ngọc Hà, Linh Phương, Duyên, Toàn Nguyễn Đức, Akai Haruma, Băng Băng 2k6, No choice teen, Nguyễn Lê Phước Thịnh, HISINOMA KINIMADO, Lê Thị Thục Hiền, Nguyễn Huy Tú, Nguyễn Huy Thắng, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh,....

NV
25 tháng 4 2019

Phương trình hoành độ giao điểm: \(x^2-2mx+2m-4=0\)

1/ Bạn tự giải

2/ \(\Delta'=m^2-2m+4=\left(m-1\right)^2+3>0\Rightarrow\) pt luôn có 2 nghiệm pb hay d luôn cắt (P) tại 2 điểm phân biệt

Theo Viet ta có: \(\left\{{}\begin{matrix}x_A+x_B=2m\\x_Ax_B=2m-4\end{matrix}\right.\)

\(AB^2=\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2\)

\(AB^2=\left(x_A-x_B\right)^2+\left(mx_A-m+2-mx_B+m-2\right)^2\)

\(AB^2=\left(x_A-x_B\right)^2+m^2\left(x_A-x_B\right)^2=\left(m^2+1\right)\left(x_A-x_B\right)^2\)

\(AB^2=\left(m^2+1\right)\left[\left(x_A+x_B\right)^2-4x_Ax_B\right]\)

\(AB^2=\left(m^2+1\right)\left(4m^2-4\left(2m-4\right)\right)\)

\(AB^2=\left(m^2+1\right)\left(4m^2-8m+8\right)\)

\(\Leftrightarrow AB^2=4m^4-8m^3+12m^2-8m+8=-8m^3-8m\)

\(\Leftrightarrow4m^4+12m^2+8=0\)

Phương trình vô nghiệm, vậy ko có m thoả mãn