Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(x^3y^2(xy^2)=x^3.x.y^2.y^2=x^4y^4\)
\(-3x^3y.\frac{1}{5}x^2y=\frac{-3}{5}x^3.x^2.y.y=\frac{-3}{5}x^5y^2\)
\(\frac{2}{5}x^3\frac{1}{2}(xy)^2=\frac{1}{5}x^3.x^2.y^2=\frac{1}{5}x^5y^2\)
\(\frac{1}{2}(xy)^2\frac{2}{5}(xy)^2=\frac{1}{5}x^2.x^2.y^2.y^2=\frac{1}{5}x^4y^4\)
Vậy các đơn thức phần a,b,c đồng dạng với nhau; đơn thức d và e đồng dạng với nhau.
Khẳng định (A) 3x2y3 và 3x3y2 là hai đơn thức đồng dạng : Sai
a) Thay x = \(\sqrt{2}\)vào biểu thức ta có :
\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)
Giá trị của A khi x = \(\sqrt{2}\)là 0
b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)
Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)
Giá trị của B khi x = 3 là 32
d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)
Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)
=> D = 8
e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)
Lại có x + y + z = 0
=> x + y = -z
=> x + z = - y
=> y + z = - x
Khi đó E = \(\frac{-xyz}{xyz}=-1\)
\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)
Hệ số \(\frac{-125}{27}\)
Biến : a8b2x16y7zn + 2
Cả 2 đơn thức không có đồng dạng với nhau
Nhớ tick cho mình nha!
KO CÓ ĐƠN THỨC ĐỒNG DẠNG