\(A\left(x\right)=x^2-x-2-2x^4+7\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

a, \(A\left(x\right)=x^2-x-2-2x^4+7=-2x^4+x^2-x+\left(-2+7\right)=-2x^4+x^2-x+5\)

\(B\left(x\right)=6x^3+2x^4-8x-5-2x^3-x^2=2x^4+\left(6x^3-2x^3\right)-x^2-8x-5=2x^4+4x^3-x^2-8x-5\)

b, \(A\left(1\right)=-2.1^4+1^2-1+5=-2.1+1-1+5=-2+1-1+5=3\)

\(B\left(2\right)=2.2^4+4.2^3-2^2-8.2-5=2.16+4.8-4-16-5=32+28-4-16-5=35\)

c, \(A\left(x\right)+B\left(x\right)=-2x^4+x^2-x+5+2x^4+4x^3-x^2-8x-5=\left(-2x^2+2x^4\right)+4x^3+\left(x^2-x^2\right)+\left(x-8x\right)+\left(5-5\right)=4x^3-7x\)

d, Ta có: \(A\left(x\right)+B\left(x\right)=0\)

\(\Rightarrow x^3-7x=0\Rightarrow x.\left(x^2-7\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x=0\\x^2-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x^2=7\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\pm\sqrt{7}\end{matrix}\right.\)

Vậy \(x\in\left\{-\sqrt{7};0;\sqrt{7}\right\}\) là nghiệm của đa thức \(A\left(x\right)+B\left(x\right)\)

Chúc bạn học tốt nha!!!

5 tháng 4 2018

1) \(A\left(x\right)=-5x^3+3x^4+\frac{5}{7}-8x^2-10x\)

\(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

\(B\left(x\right)=-2x^4-\frac{2}{7}+7x^2+8x^3+6x\)

\(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

2)       \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

      +

          \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)+B\left(x\right)=x^4+3x^3-x^2-4x+\frac{3}{7}\)

                \(A\left(x\right)=3x^4-5x^3-8x^2-10x+\frac{5}{7}\)

-

                \(B\left(x\right)=-2x^4+8x^3+7x^2+6x-\frac{2}{7}\)

\(A\left(x\right)-B\left(x\right)=5x^4-13x^3-15x^2-16x+1\)

4 tháng 4 2017

a) \(A=\)\(x^4\)\(+4x^3\)\(+2x^2\)\(+x\)\(-7\)

  \(B=\)\(2x^4\)\(-4x^3\)\(-2x^2\)\(-5x\)\(+3\)

b) f(x)= A(x)+B(x)= \(3x^4-4x\)\(-4\)

    g(x)=A(x)-B(x) =  \(-x^4+8x^3+4x^2+6x\)\(-10\)

c) g(x)= \(0^4+8.0^3+4.0^2\)\(+6.0\)\(-10\)

         = -10

   g(-2)=\(-2^4+8.-2^3+4.-2^2+6.-2\)\(-10\)

         =\(-54\)

4 tháng 5 2019

a) A(x) = \(x^2-5x^3+3x+\)\(2x^3\)\(x^2+\left(-5x^3+2x^3\right)+3x\)=\(x^2-3x^3+3x\)

=\(-3x^3+x^2+3x\)

B(x)= \(-x^2+7+3x^3-x-5\)\(-x^2+2+3x^3-x\)

=\(3x^3-x^2-x+2\)

b) A(x) - B(x) = \(-3x^3+x^2+3x\)\(3x^3+x^2+x-2\)

=\(\left(-3x^3-3x^3\right)+\left(x^2+x^2\right)+\left(3x+x\right)-2\)\(-6x^3+2x^2+4x-2\)

vậy A(x) - B(x) =\(-6x^3+2x^2+4x-2\)

c) C(x) = A(x) + B(x) =\(-3x^3+x^2+3x\)\(3x^3-x^2-x+2\)= 2x+2

ta có: C(x) = 0 <=> 2x+2=0

      => 2x=-2

=> x=-1

vậy x=-1 là nghiệm của đa thức C(x)

4 tháng 5 2019

a) A(x)= -3x^3 + x^2 + 3x

B(x)= 3x^3 - x^2 - x +2

b) A(x) - B(x) = - 3x^3 + x^2 + 3x - (3x^3 - x^2 - x + 2)

= -3x^3 + x^2 + 3x - 3x^3 + x^2 + x - 2

= -6x^3 + 2x^2 + 4x -2 

c) C(x) = A(x) + B(x) = - 3x^3 + x^2 + 3x + 3x^3 - x^2 - x +2= 2x + 2

C(x) có nghiệm => C(x)=0 => 2x + 2 = 0 => 2x=-2 => x=-1

Vậy x=-1 là nghiệm của C(x)

6 tháng 4 2017

a,

C(x)=-3x^4-2x^3+x^2+x+5

Bài 1:

a) \(f\left(x\right)=2x\left(x^2-3\right)-4\left(1-2x\right)+x^2\left(x-1\right)+\left(5x+3\right)\)

\(=2x^3-6x-4+8x+x^3-x^2+5x+3\)

\(=x^3-x^2+7x-1\)

\(g\left(x\right)=-3\left(1-x^2\right)-2\left(x^2-2x+1\right)\)

\(=-3+3x^2-2x^2+4x-2\)

\(=x^2+4x-5\)

b) \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)

\(=x^3-x^2+7x-1-x^2-4x+5\)

\(=x^3-2x^2+3x-4\)

11 tháng 8 2018

Cảm ơn ạ