\(P=3x^2y-2x+5xy^2-7y^2\)

\(Q=3xy^...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P+Q=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5

= (3x^2y-9x^2y)+(-2x-x)+(5xy^2+3xy^2)+(-7y^2-7y^2)+-5

=12x^2y+-3x+8xy^2+-14y^2+-5

11 tháng 1 2018

a) M = P + Q

M = (3x2y - 2x + 5xy2 -7y2) + (3xy2 - 7y2 - 9x2y - x - 5)

M = 3x2y - 2x + 5xy2 -7y2 + 3xy2 - 7y2 - 9x2y - x - 5

M = 12x2y + 8xy2 -3x -14y2 -5

1 tháng 5 2019

a. P= (-8.x^2.y-2.5+6x^2)-(-7x^2y+2x^2)

b. P= vế phải cộng vế trái là ra

30 tháng 4 2019

a. P=-x^2.y-10+4.x^2

b.P= 7xy+x^2-11y

17 tháng 6 2018

A + B - C = \(x^2-2x\)\(+3xy^2-x^2y+x^2y^2\)\(+\left(-2x^2\right)+3y^2-5x+y+3\)\(-\left(3x^2-2xy+7y^2-3x-5y-6\right)\)

\(x^2-2x+3xy^2-x^2y+x^2y^2-2x^2+3y^2-5x+y+3-3x^2+2xy-7y^2+3x+5y+6\)

=  \(-4x^2+3xy^2-4x-4y^2+6y+2xy+9\)

A-B+C=\(x^2-2x+3xy^2-x^2y+x^2y^2\)\(-\left(-2x^2+3y^2-5x+y+3\right)\)\(+3x^2-2xy+7y^2-3x-5y-6\)

 = \(x^2-2x+3xy^2-x^2y+x^2y^2+2x^2-3y^2+5x-y-3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(6x^2+3xy^2+4y^2-2xy-6y-9\)

-A+B+C =\(-\left(x^2-2x+3xy^2-x^2y+x^2y^2\right)\)\(-2x^2+3y^2-5x+y+3+3x^2-2xy+7y^2\)\(-3x-5y-6\)

\(-x^2+2x-3xy^2+x^2y-x^2y^2\)\(-2x^2+3y^2-5x+y+3\)\(+3x^2-2xy+7y^2-3x-5y-6\)

\(-6x+10y^2-3xy^2-4y-2xy-3\)

còn bậc cậu tự tìm nha bậc để mà

Bài làm

1.

a) 5x.3xy2 

= 15x2y2 

b) ( -2/3 xy2z )( -3x2y)2 

= ( -2/3xy2z)( 9x4y2 )

= -6x5y4z

2)

a) M = P + Q = ( 3x2y - 2x + 5xy2 - 7y2 ) + ( 3xy2 - 7y2 - 9x2y - x - 5 )

                  = 3x2y - 2x + 5xy2 - 7y2 + 3xy2 - 7y2 - 9x2y - x - 5 

                  = ( 3x2y - 9x2y ) + ( 5xy2 + 3xy2 ) + ( -2x - x ) + ( -7y2 - 7y2 ) - 5

                  = -6x2y + 8xy2 - 3x -14y2 - 5

Vậy M = P + Q = -6x2y + 8xy2 - 3x -14y2 - 5

b) M = Q - P = ( 3xy2 - 7y2 - 9x2y - x - 5 ) - ( 3x2y - 2x + 5xy2 - 7y2 ) 

                   = 3xy2 - 7y2 - 9x2y - x - 5 - 3x2y + 2x - 5xy2 + 7y2         

                   = ( -3x2y - 9x2y ) + ( 3xy2 - 5xy2 ) + ( 2x - x ) + ( -7y2 + 7y2 ) - 5

                  = -11x2y - 2xy2 + x - 5

Vậy M = Q - P = -11x2y - 2xy2 + x - 5

5 tháng 6 2018

A + B - C

\(=\left(x^2-2x+3xy^2-x^2y^2\right)+\left(-2x^2+3y^2+5x+y+3\right)-\left(3x^2-2xy+7y^2-3x+1\right)\)

\(=x^2-2x+3xy^2-x^2y^2-2x^2+3y^2+5x+y+3-3x^2+2xy-7y^2+3x-1\)

\(=\left(x^2-2x^2-3x^2\right)+\left(-2x-5x+3x\right)++3xy^2-x^2y+x^2y^2+\left(3y^2-7y^2\right)+y+\left(3-1\right)\)

\(=-4x^2-4x+3xy^2-x^2y+x^2y^2-4y^2+y+2\)

Bậc của đa thức là 4

31 tháng 5 2018

@Lê Thị Điệu Đàn nè

10 tháng 6 2019

Bài 1

a)M+N=\(x^2y+xy^2-5x^2y^2+x^3+x^3+xy+3xy^2-x^2y+x^2y^2\)

=4xy2-4x2y2+2x3+xy

b)M-N=\(x^2y+xy^2-5x^2y^2+x^3-x^3-xy-3xy^2+x^2y-x^2y^2\)

=\(2x^2y-2xy^2-xy-6x^2y^2\)

8 tháng 5 2019

\(\left(2x^2y+x^2y^2-3xy^2+5\right)-M=2x^3y-5xy^2+4\)

\(M=\left(2x^2y+x^2y^2-3xy^2+5\right)-\left(2x^3y-5xy^2+4\right)\)

\(=2x^2+x^2y^2+2xy^2-2x^3y+1\)

Thay vào,ta có:

\(M=2\cdot\left(-\frac{1}{2}\right)^2+\left(-\frac{1}{2}\right)^2\cdot\left(-\frac{1}{2}\right)^2-2\cdot\left(-\frac{1}{2}\right)^3\cdot\left(-\frac{1}{2}\right)+1\)

\(=\frac{1}{2}+\frac{1}{16}-\frac{1}{8}+1\)

tự tính nốt:3

8 tháng 5 2019

a) M=\(2xy^2+x^2y^2-3xy^2+5\) - \(2x^3y-5xy^2+4\)

=\(\left(2xy^2-3xy^2-5xy^2\right)\)\(x^2y^2\)+ ( 5+4 ) \(-2x^3y\)=\(-6xy^2\)\(x^2y^2\)+9 - \(2x^3y\)

bậc của đa thức là: 4

b) tại x=\(\frac{-1}{2}\); y=\(\frac{-1}{2}\)ta có:

M=\(-6xy^2+x^2y^2+9-2x^3y\)=\(-6.\left(\frac{-1}{2}\right)\left(\frac{-1}{2}\right)^2\)\(\left(\frac{-1}{2}\right)^2\left(\frac{-1}{2}\right)^2\)+ 9 - \(2\left(\frac{-1}{2}\right)^3\left(\frac{-1}{2}\right)\)

=\(3.\frac{1}{4}\)\(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}\)\(\frac{1}{8}\)+ 9 - \(\frac{1}{8}\)=\(\frac{3}{4}+9\)=\(\frac{3}{4}+\frac{36}{4}\)=\(\frac{39}{4}\)

vậy tại \(x=\frac{-1}{2}\)\(y=\frac{-1}{2}\)thì M=\(\frac{39}{4}\)