Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể lập được bao nhiêu số có 4 chữ số khác nhau từ các chữ số trên sao cho số vừa lập được chia hết cho 2 và 5 là 2350 ; 2530 ; 3250 ; 3520 ; 5230 ; 5320
Gọi số có 3 chữ số là abc
a có 5 cách chọn
b có 4 cách chọn
c có 3 cách chọn
Vậy lập được 5 * 4 * 3 = 60 số có 3 chữ số khác nhau
a,
Có 4 cách chọn chữ số hàng nghìn
Có 3 cách chọn chữ số hàng trăm
Có 2 cách chọn chữ số hàng chục
Có 1 cách chọn chữ số hàng đơn vị
\(\Rightarrow\)có tất cả \(4\times3\times2\times1=24\)\((\)cách lập \()\)
Vậy ....
a) có thể lập đc :
24 số
b) 66720 < sai thì thui nha >
~~tk mk đó~
a) Cách 1: Sơ đồ
Các số cần tìm có dạng abcd
Từ sơ đồ cây
\(\Rightarrow\)Có \(4\times24=96\) số thỏa mãn đề
Cách 2: Quy tắc nhân
Các số cần lập có dạng abcd
Ta có:
\(a\) có \(4\) cách lựa chọn vì \(a\ne0\)
\(b\) có \(4\) cách lựa chọn vì sau khi chọn \(a\) thì còn lại \(4\) chữ số
\(c\) có \(3\) cách lựa chọn
\(d\) có \(2\) cách lựa chọn
\(\Rightarrow\) Số lượng số cần lập là \(4\times4\times3\times2=96\)(số)
Từ sơ đồ cây \(\Rightarrow\)Có \(60\) số chẵn và \(36\) số lẻ
b. Ta có số có \(4\) chữ số có dạng abcd
Vì abcd là số chẵn lớn nhất
Từ sơ đồ cây suy ra abcd = 4320
Số lẻ nhỏ nhất là abcd = 1023