\(c^2+a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\) 6

Tính B= 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020

Chắc hết lỗi rồi, xin trình bày lại

Ta có: \(c^2+a^2+b^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)

\(=\left(a^2+\frac{1}{a^2}\right)+\left(b^2+\frac{1}{b^2}\right)+\left(c^2+\frac{1}{c^2}\right)\)

\(\ge2\sqrt{a^2\cdot\frac{1}{a^2}}+2\sqrt{b^2\cdot\frac{1}{b^2}}+2\sqrt{c^2\cdot\frac{1}{c^2}}\left(Cauchy\right)\)

\(=2+2+2=6\)

Dấu "=" xảy ra khi: \(a^4=b^4=c^4=1\Leftrightarrow a^{2020}=b^{2020}=c^{2020}=1\)

\(\Rightarrow B=a^{2020}+b^{2020}+c^{2020}=1+1+1=3\)

Vậy B = 3

5 tháng 11 2020
(c^2+a^2+b^2+rac{1}{a^2}+rac{1}{b^2}+rac{1}{c^2})(=left(a^2+rac{1}{a^2} ight)+left(b^2+rac{1}{b^2} ight)+left(c^2+rac{1}{c^2} ight))(ge2sqrt{a^2cdotrac{1}{a^2}}+2sqrt{b^2cdotrac{1}{b^2}}+2sqrt{c^2cdotrac{1}{c^2}}) (Cauchy)(=2+2+2=6)Dấu "=" xảy ra khi: (a^2=rac{1}{a^2};b^2=rac{1}{b^2};c^2=rac{1}{c^2}Leftrightarrow a^4=b^4=c^4=1)(Leftrightarrow a^{2020}=b^{2020}=c^{2020}=1)(Rightarrow B=a^{2020}+b^{2020}+c^{2020}=1+1+1=3)
26 tháng 10 2019

\(a^2+\frac{1}{a^2}\ge2\sqrt{a^2+\frac{1}{a^2}}=2\\ \)(do Bđt cosi)=> \(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge6\\ \)

Dấu "=" xảy ra <=> a=b=c=1

=>B=3

26 tháng 10 2019

Bất đẳng thức cosi mình chưa học

25 tháng 10 2019

\(a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge2\sqrt{\frac{a^2}{a^2}}+2\sqrt{\frac{b^2}{b^2}}+2\sqrt{\frac{c^2}{c^2}}=6\)

Dấu = xảy ra khi a^4=b^4=c^4=1 <=> \(a=\pm1;b=\pm1;c\pm1\)

-> B = 3

25 tháng 8 2020

Ta có :\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=36\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=36\)

 \(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=12\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)

\(\Rightarrow\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}=\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

=> \(\frac{2}{a^2}+\frac{2}{b^2}+\frac{2}{c^2}-\frac{2}{ab}-\frac{2}{bc}-\frac{2}{ca}=0\)

=> \(\left(\frac{1}{a^2}-\frac{2}{ab}+\frac{1}{b^2}\right)+\left(\frac{1}{b^2}-\frac{2}{bc}+\frac{1}{c^2}\right)+\left(\frac{1}{c^2}-\frac{2}{ac}+\frac{1}{a^2}\right)=0\)

=> \(\left(\frac{1}{a}-\frac{1}{b}\right)^2+\left(\frac{1}{b}-\frac{1}{c}\right)^2+\left(\frac{1}{c}-\frac{1}{a}\right)^2=0\)

=> \(\hept{\begin{cases}\frac{1}{a}-\frac{1}{b}=0\\\frac{1}{b}-\frac{1}{c}=0\\\frac{1}{c}-\frac{1}{a}=0\end{cases}}\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

Khi đó \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\Leftrightarrow3\frac{1}{a}=6\Rightarrow\frac{1}{a}=2\Leftrightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=2\)

Khi đó  Đặt P = \(\left(\frac{1}{a}-3\right)^{2020}+\left(\frac{1}{b}-3\right)^{2020}+\left(\frac{1}{c}-3\right)^{2020}\)

= (2 - 3)2020 + (2 - 3)2020 + (2 - 3)2020

= 1 + 1 + 1 = 3

Vậy P = 3 

22 tháng 8 2019

a)

\(A=\frac{2020^3+1}{2020-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020-2020+1}\) \(=2020+1=2021\)

b)

B = \(\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}\) \(=2020-1=2019\)

22 tháng 8 2019

a. \(A=\frac{2020^3+1}{2020^2-2019}=\frac{\left(2020+1\right)\left(2020^2-2020+1\right)}{2020^2-2020+1}=2020+1=2021\)

b. \(B=\frac{2020^3-1}{2020^2+2021}=\frac{\left(2020-1\right)\left(2020^2+2020+1\right)}{2020^2+2020+1}=2020-1=2019\)

NV
18 tháng 8 2020

Bạn tham khảo:

Câu hỏi của Nobody - Toán lớp 8 | Học trực tuyến

Ta có: \(2020+c^2=ab+bc+ca+c^2=\left(b+c\right)\left(c+a\right)\)

Tương tự => \(2020+a^2=\left(a+b\right)\left(c+a\right)\)

\(2020+b^2=\left(a+b\right)\left(b+c\right)\)

=> PT = \(\frac{a-b}{\left(b+c\right)\left(c+a\right)}+\frac{b-c}{\left(a+b\right)\left(c+a\right)}+\frac{c-a}{\left(a+b\right)\left(b+c\right)}\)

= \(\frac{\left(a-b\right)\left(a+b\right)+\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = \(\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) = 0

2 tháng 5 2020

Cmr biểu thức đó bằng 0

NV
18 tháng 8 2020

\(\left(a+b+c\right)^2=3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

\(\Rightarrow P=\frac{a^{2020}+1}{a^{2020}+a^{2020}+a^{2020}+3}=\frac{a^{2020}+1}{3\left(a^{2020}+1\right)}=\frac{1}{3}\)

11 tháng 2 2020

1.Tìm điều kiện xác định của phương trình:

a) 1x2+11x2+1 -4xx4xx =0 (1)

b) 1x211x21 -2020 (2)

c) x2020x2019x2020x2019 + x2021x2+1 (2)

Giải:

a) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (1) xác định là x ≠ 0.

b) Để phương trình (2) xác định thì x2 - 1 ≠ 0 ⇔ (x + 1)(x - 1) ≠ 0

\(\left[{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\) ⇔ x ≠ \(\pm\) 1

Vậy điều kiện để phương trình (2) xác định là x ≠ \(\pm\) 1.

c) Dễ thấy: x2 + 1 ≠ 0 \(\forall\) x

Vậy điều kiện để phương trình (3) xác định là x ≠ 2019.

11 tháng 2 2020

cảm ơn bạn nha .ha