Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{3-1}{3}+\frac{3^2-1}{3^2}+...+\frac{3^n-1}{3^n}\)
\(=1-\frac{1}{3}+1-\frac{1}{3^2}+...+1-\frac{1}{3^n}\)
\(=1+1+...+1-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)\)
\(=n-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\right)=n-D\)
\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow2D=1-\frac{1}{3^n}\Rightarrow D=\frac{1}{2}-\frac{1}{2.3^n}\)
\(\Rightarrow C=n-\left(\frac{1}{2}-\frac{1}{2.3^n}\right)=n-\frac{1}{2}+\frac{1}{2.3^n}>n-\frac{1}{2}\)
ta có A/B=...........................=(1.3.5...45).(2.4.6.....46/(4.6.8.....48)(5.7.9....49)=3.2/47.48.49<1
=>A<B
xét A có tử nhỏ hơn mẫu =>A<1<133
=>A<133
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
\(C=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\)
\(4C=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\)
\(4C-C=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2017}{4^{2016}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2017}{4^{2017}}\right)\)
\(3C=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\)
\(12C=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\)
\(12C-3C=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2015}}-\frac{2017}{4^{2016}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2016}}-\frac{2017}{4^{2017}}\right)\)
\(9C=4-\frac{2017}{4^{2016}}-\frac{1}{4^{2016}}+\frac{2017}{4^{2017}}\)
\(9C=4-\frac{8068}{4^{2017}}-\frac{4}{4^{2017}}+\frac{2017}{4^{2017}}\)
\(9C=4-\frac{10081}{4^{2017}}\)
=> 9C < 4
=> C < \(\frac{4}{9}\)< \(\frac{1}{2}\)(đpcm)