K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 6 2020

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)

Tam giác PAB đều \(\Leftrightarrow\widehat{APB}=60^0\Rightarrow\widehat{API}=30^0\)

\(\Rightarrow IP=\frac{IA}{sin30^0}=2IA=2R=6\)

\(\Rightarrow P\) thuộc đường tròn (C') tâm I bán kính 6

Để có duy nhất điểm P \(\Leftrightarrow\) d tiếp xúc (C')

\(\Leftrightarrow d\left(I;d\right)=6\Leftrightarrow\frac{\left|3.1-4\left(-2\right)+m\right|}{\sqrt{3^2+\left(-4\right)^2}}=6\)

\(\Leftrightarrow\left|m+11\right|=30\Rightarrow\left[{}\begin{matrix}m=19\\m=-41\end{matrix}\right.\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

NV
10 tháng 5 2020

Đường tròn (C) tâm \(I\left(1;3\right)\) bán kính \(R=3\)

Theo tính chất tiếp tuyến, do \(AB=AC\Rightarrow\Delta ABC\) vuông cân tại A

\(\Rightarrow ABIC\) là hình vuông

\(\Rightarrow AI=R\sqrt{2}=3\sqrt{2}\)

Gọi \(A\left(a;-a-m\right)\Rightarrow\overrightarrow{IA}=\left(a-1;-a-m-3\right)\)

\(\Rightarrow\left(a-1\right)^2+\left(a+m+3\right)^2=18\)

\(\Leftrightarrow2a^2+2\left(m+2\right)a+m^2+6m-8=0\) (1)

Để có duy nhất 1 điểm A \(\Leftrightarrow\left(1\right)\) có nghiệm kép

\(\Leftrightarrow\Delta'=\left(m+2\right)^2-2\left(m^2+6m-8\right)=0\)

\(\Leftrightarrow-m^2-8m+20=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-10\end{matrix}\right.\)

NV
29 tháng 5 2020

Sửa đề: (C) \(x^2+y^2+2x-4y=0\)

Đường tròn tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{5}\)

Do MA; MB là tiếp tuyến \(\Rightarrow MA=MB\)

\(\widehat{AMB}=60^0\Rightarrow\Delta AMB\) đều \(\Rightarrow MA=MB=AB\)

\(\widehat{AIB}=180^0-60^0=120^0\)

\(\Rightarrow AB=\sqrt{IA^2+IB^2-2IA.IB.cos120^0}=\sqrt{15}\)

\(\Rightarrow IM=\sqrt{IA^2+AM^2}=\sqrt{5+15}=2\sqrt{5}\)

Do \(M\in d\Rightarrow M\left(m;m+1\right)\) \(\Rightarrow\overrightarrow{IM}=\left(m+1;m-1\right)\)

\(\Rightarrow\left(m+1\right)^2+\left(m-1\right)^2=20\)

\(\Leftrightarrow2m^2+2=20\Rightarrow m^2=9\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\)

Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(3;4\right)\\M\left(-3;-2\right)\end{matrix}\right.\)

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m. Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π) a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα). b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình. Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng...
Đọc tiếp

Bài 1: Cho đường thẳng d : (1 - m2)x + 2my + m2 - 4m + 1 = 0. Viết phương trình đường tròn (C) luôn tiếp xúc với d với mọi m.

Bài 2: Cho (Cα) : (x2 + y2)sin α = 2( x cos α + y sin α - cos α) (α ≠ k π)

a, CMR: (Cα) luôn là một đường tròn. Định tâm và bán kính của (Cα).

b, CMR: (Cα) có một tiếp tuyến cố định mà ta sẽ xác định phương trình.

Bài 3: Biện luận tùy theo m sự tương giao của đường thẳng (△) và đường tròn (C).

a, (C): x2 + y2 + 2x - 4y + 4 = 0 và (△): mx - y + 2 = 0.

b, (C): x2 + y2 - 4x + 6y + 3 = 0 và (△): 3x - y + m = 0.

Bài 4: Cho đường tròn (C): x2 + y2 - 2x - 4y - 4 = 0 và (C'): x2 + y2 + 6x - 2y + 1 = 0.

a, Chứng minh (C) và (C') cắt nhau tại hai điểm A, B.

b, Cho điểm M(4;1). Chứng minh qua M có hai tiếp tuyến đến (C). Gọi E, F là hai tiếp điểm của hai tiếp tuyến trên với (C). Hãy lập phương trình đường tròn (C) ngoại tiếp với △ MEF.

0