Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường tròn (C) tâm \(I\left(1;3\right)\) bán kính \(R=3\)
Theo tính chất tiếp tuyến, do \(AB=AC\Rightarrow\Delta ABC\) vuông cân tại A
\(\Rightarrow ABIC\) là hình vuông
\(\Rightarrow AI=R\sqrt{2}=3\sqrt{2}\)
Gọi \(A\left(a;-a-m\right)\Rightarrow\overrightarrow{IA}=\left(a-1;-a-m-3\right)\)
\(\Rightarrow\left(a-1\right)^2+\left(a+m+3\right)^2=18\)
\(\Leftrightarrow2a^2+2\left(m+2\right)a+m^2+6m-8=0\) (1)
Để có duy nhất 1 điểm A \(\Leftrightarrow\left(1\right)\) có nghiệm kép
\(\Leftrightarrow\Delta'=\left(m+2\right)^2-2\left(m^2+6m-8\right)=0\)
\(\Leftrightarrow-m^2-8m+20=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-10\end{matrix}\right.\)
Sửa đề: (C) \(x^2+y^2+2x-4y=0\)
Đường tròn tâm \(I\left(-1;2\right)\) bán kính \(R=\sqrt{5}\)
Do MA; MB là tiếp tuyến \(\Rightarrow MA=MB\)
Mà \(\widehat{AMB}=60^0\Rightarrow\Delta AMB\) đều \(\Rightarrow MA=MB=AB\)
\(\widehat{AIB}=180^0-60^0=120^0\)
\(\Rightarrow AB=\sqrt{IA^2+IB^2-2IA.IB.cos120^0}=\sqrt{15}\)
\(\Rightarrow IM=\sqrt{IA^2+AM^2}=\sqrt{5+15}=2\sqrt{5}\)
Do \(M\in d\Rightarrow M\left(m;m+1\right)\) \(\Rightarrow\overrightarrow{IM}=\left(m+1;m-1\right)\)
\(\Rightarrow\left(m+1\right)^2+\left(m-1\right)^2=20\)
\(\Leftrightarrow2m^2+2=20\Rightarrow m^2=9\Rightarrow\left[{}\begin{matrix}m=3\\m=-3\end{matrix}\right.\)
Có 2 điểm M thỏa mãn: \(\left[{}\begin{matrix}M\left(3;4\right)\\M\left(-3;-2\right)\end{matrix}\right.\)
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
Tam giác PAB đều \(\Leftrightarrow\widehat{APB}=60^0\Rightarrow\widehat{API}=30^0\)
\(\Rightarrow IP=\frac{IA}{sin30^0}=2IA=2R=6\)
\(\Rightarrow P\) thuộc đường tròn (C') tâm I bán kính 6
Để có duy nhất điểm P \(\Leftrightarrow\) d tiếp xúc (C')
\(\Leftrightarrow d\left(I;d\right)=6\Leftrightarrow\frac{\left|3.1-4\left(-2\right)+m\right|}{\sqrt{3^2+\left(-4\right)^2}}=6\)
\(\Leftrightarrow\left|m+11\right|=30\Rightarrow\left[{}\begin{matrix}m=19\\m=-41\end{matrix}\right.\)