Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 Ta có: 201810 + 20189 = 20189.(2018 + 1) = 20189. 2019
201710 = 20179.2017
=> 201810 + 20189 > 201710
2. A = 1 + 2 + 22 + 23 + ... + 2100
2A = 2(1 + 2 + 22 + 23 + ... + 2100)
2A = 2 + 22 + 23 + ... + 2101
2A - A = (2 + 22 + 23 + ... + 2101) - (1 + 2 + 22 +. ... + 2100)
A = 2101 - 1
B = 1 + 6 + 11 + 16 + ... + 51
B = (51 + 1)[(51 - 1) : 5 + 1] : 2
B = 52. 11 : 2
B = 286
\(A=\frac{10^{2017}}{10^{2018+1}}=\frac{10^{2017}}{10^{2019}}=\frac{1}{10^2}\)
Tương Tự với \(B=\frac{1}{10^2}\)
\(\Rightarrow A=B\)
Ta có:
A = 1 + 5 + 52 + 53 + 54 + ...+ 52017
A = \(\frac{5^{2017}-1}{5-1}\)
B = \(\frac{5^{2018}-1}{2-1}\)
=> \(4A=\frac{5^{2017}-1}{4}.4=5^{2017}-1< B=5^{2018}-1\)
Vậy 4A < B
Ta có: 5A=5(1+5+52+....+52017)
5A=5+52+53+....+52018
5A-A=(5+52+53+...+52018)-(1+5+52+....+52017)
4A=52018-1
Vì 4A=52018-1. Mà 52018-1=52018-1
Suy ra:4A=B
\(C=5^{2018}+\frac{1}{5^{2017}+1}=\left(5^{2017}+1\right)+\frac{1}{5^{2017}+1}\)
\(D=5^{2018}+\frac{1}{5^{2018}+1}=\left(5^{2017}+1\right)+\left(1+\frac{1}{5^{2017}+2}\right)\)
Do \(\frac{1}{5^{2017}+1}< 1+\frac{1}{5^{2017}+2}\)
Nên \(C< D\)
Ta có : C = \(\frac{5^{2018}+1}{5^{2017}+1}\)
=> \(\frac{C}{5}=\frac{5^{2018}+1}{5^{2018}+5}=1-\frac{4}{5^{2018}+5}\)
Lại có D = \(\frac{5^{2019}+1}{5^{2018}+1}\)
=> \(\frac{D}{5}=\frac{5^{2019}+1}{5^{2019}+5}=1-\frac{4}{5^{2019}+5}\)
Vì \(\frac{4}{5^{2018}+5}>\frac{4}{5^{2019}+5}\Rightarrow1-\frac{4}{5^{2018}+5}< 1-\frac{4}{5^{2019}+5}\Rightarrow\frac{C}{5}< \frac{D}{5}\Rightarrow C< D\)