Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
\(C=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{1986}\left(3+3^3+3^5\right)\\ C=\left(3+3^3+3^5\right)\left(1+3^6+...+3^{1986}\right)\\ C=273\left(1+3^6+...+3^{1986}\right)\\ C=13\cdot21\left(1+3^6+...+3^{1986}\right)⋮13\\ C=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\\ C=\left(3+3^3+3^5+3^7\right)+3^8\left(3+3^3+3^5+3^7\right)+...+3^{1984}\left(3+3^3+3^5+3^7\right)\\ C=\left(3+3^3+3^5+3^7\right)\left(1+3^8+...+3^{1984}\right)\\ C=2460\left(1+3^8+...+3^{1984}\right)\\ C=41\cdot60\left(1+3^8+...+3^{1984}\right)⋮41\)
A) a - b chia hết cho 6 và 6b chia hết cho 6 => a - b + 6b chia hết cho 6 => a + 5b chia hết cho 6
B) a - b chia hết cho 6 và 18b chia hết cho 6 => a - b + 18b chia hết cho 6 => a + 17b chia hết cho 6
C) a - b chia hết cho 6 và -12b chia hết cho 6 => a - b - 12b chia hết cho 6 => a -13b chia hết cho 6
a: \(G=8^8+2^{20}\)
\(=2^{24}+2^{20}\)
\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)
b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{59}\right)⋮3\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(H=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)⋮15\)
c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)
\(E=1+3+3^2+3^3+...+3^{1991}\)
\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)
\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)
mk làm câu A = ... nha
ta có A = 3 + 33 + 35 + ...+31991
A = ( 3 + 33 + 35 ) + ( 37 + 3 9 + 311 ) + ... + ( 31987 + 31989 + 1991 )
A = 3 . (1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31987 . ( 1 + 3 + 32 )
A = 3 . 13 + 37 . 13 + ... + 31987. 13
A = 13 . ( 3 + 37 + ... + 31987 ) ( VÌ 13 CHIA HẾT CHO 13 )
=> A CHIA HẾT CHO 13
\(C=3+3^3+3^5+.....+3^{1991}.\)
\(=\left(3+3^3+3^5+3^7\right)+\left(3^9+3^{11}+3^{13}+3^{15}\right)+.....+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)
\(=3.\left(1+3^2+3^4+3^6\right)+3^9\left(1+3^2+3^4+3^6\right)+....+3^{1985}\left(1+3^2+3^4+3^6\right)\)
\(=3.820+3^9.820+....+3^{1985}.820\)
\(=820\left(3+3^9+....+3^{1985}\right)\)
\(=41.20\left(3+3^9+...+3^{1985}\right)\)
\(\Rightarrow C⋮41\)